吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1658-1668.doi: 10.13229/j.cnki.jdxbgxb.20221197
• 交通运输工程·土木工程 • 上一篇
王俊1(),李加武1,2(),王峰1,2,张久鹏1,黄晓明3
Jun WANG1(),Jia-wu LI1,2(),Feng WANG1,2,Jiu-peng ZHANG1,Xiao-ming HUANG3
摘要:
使用理论推导和地形试验的方法研究了简化U形峡谷的风速规律,并分析了峡谷中大跨径悬索桥的抖振响应。研究表明:简化U形峡谷中的风速是在顺压力梯度、峡谷宽深比等因素综合作用下的结果;风速加速效应随着宽深比的增大而增加;风速的横向分布符合抛物线模式,地形模型风洞试验也验证了抛物线分布的合理性;相比较抛物线分布模式,规范推荐的均匀分布风速模式会高估大跨径悬索桥主梁位置的抖振位移响应和关键位置的抖振内力响应。本文研究结果可为峡谷地区桥梁抗风设计提供参考。
中图分类号:
1 | 郑一峰, 赵群, 暴伟, 等. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报:工学版, 2018, 48(2): 466-472. |
Zheng Yi-feng, Zhao Qun, Bao Wei, et al. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 466-472. | |
2 | 郭殊伦, 钟铁毅, 闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报:工学版, 2021, 51(5): 1756-1762. |
Guo Shu-lun, Zhong Tie-yi, Yan Zhi-gang, et al. Calculation of method of buffeting response for stay cables of long-span cable-stayed bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1756-1762. | |
3 | 马建,孙守增,杨琦,等. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5): 1-96. |
Ma Jian, Sun Shou-zeng, Yang Qi, et al. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. | |
4 | 廖海黎, 李明水, 马存明, 等. 桥梁风工程2019年度研究进展[J]. 土木与环境工程学报:中英文, 2020, 42(5): 56-66. |
Liao Hai-li, Li Ming-shui, Ma Cun-ming, et al. State-of-the-art review of bridge wind engineering in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 56-66. | |
5 | . 公路桥梁抗风设计规范 [S]. |
6 | 沈正峰. 喇叭形山口下Π型主梁斜拉桥抖振研究[D]. 西安:长安大学公路学院, 2021. |
Shen Zheng-feng. Study on buffeting of the π type main girder cable-stayed bridge in a trumpet-shaped mountain pass[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
7 | 宋佳玲. 山区沟谷地形风场特性及其对人行悬索桥静风响应的影响[D]. 西安:长安大学公路学院, 2021. |
Song Jia-ling. Study on wind characteristics and aerostatic performance of pedestrian suspension bridge in the mountainous valleys[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
8 | Song J L, Li J W, Xu R Z, et al. Field measurements and CFD simulations of wind characteristics at the Yellow River bridge site in a converging-channel terrain[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 58-72. |
9 | Lystad T M, Fenerci A, Øiseth O. Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 558-573. |
10 | Tang H J, Li Y L, Shum K M, et al. Non-uniform wind characteristics in mountainous areas and effects on flutter performance of a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: No.104177. |
11 | Ren W, Pei C, Ma C, et al. Field measurement study of wind characteristics at different measuring positions along a bridge in a mountain valley[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 216: No. 104705. |
12 | 王浩,李爱群. 大跨度悬索桥抖振数值模拟与现场实测:平稳分析[M]. 南京: 东南大学出版社, 2015. |
13 | 赵林, 李珂, 闫俊峰, 等. 典型流线桥梁断面缩阶微分方程抖振气动力模型[J]. 振动工程学报, 2017, 30(3): 413-421. |
Zhao Lin, Li Ke, Yan Jun-feng, et al. Reduced differential equation aerodynamic buffeting model of typical streamlined bridge cross-section[J]. Journal of Vibration Engineering, 2017, 30(3): 413-421. | |
14 | Shen Z, Li J, Li R, et al. Nonuniform wind characteristics and buffeting response of a composite cable-stayed bridge in a trumpet-shaped mountain pass[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217: No. 104730. |
15 | Diana G, Yamasaki Y, Larsen A, et al. Construction stages of the long span suspension Izmit Bay Bridge: wind tunnel test assessment[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 300-310. |
16 | Argentini T, Rocchi D, Somaschini C. Effect of the low-frequency turbulence on the aeroelastic response of a long-span bridge in wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: No. 104072. |
17 | 李加武, 林志兴, 项海帆. 桥梁断面雷诺数效应[J]. 空气动力学学报, 2005, 23(1): 123-128. |
Li Jia-wu, Lin Zhi-xing, Xiang Hai-fan. Reynolds number effect of bridge deck section[J]. Acta Aerodynamica Sinica, 2005, 23(1): 123-128. | |
18 | 李加武, 崔欣, 张宏杰, 等. 粗糙度对雷诺数效应的影响[J]. 长安大学学报:自然科学版, 2009, 29(2): 56-59, 64. |
Li Jia-wu, Cui Xin, Zhang Hong-jie, et al. Influence of surface roughness on Reynolds number effects [J]. Journal of Chang'an University (Natural Science Edition), 2009, 29(2): 56-59, 64. | |
19 | 张丹, 李加武, 徐洪涛. 流线型桥梁断面雷诺数效应[J]. 土木工程与管理学报, 2015, 32(4): 67-72. |
Zhang Dan, Li Jia-wu, Xu Hong-tao. Reynolds number effect of streamline-like bridge deck section[J]. Journal of Civil Engineering and Management, 2015, 32(4): 67-72. | |
20 | 林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200. |
Lin Yang, Feng Zhou-quan, Hua Xu-gang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records[J]. Engineering Mechanics, 2020, 37(2): 192-200. | |
21 | Ali K, Katsuchi H, Yamada H. Generalized framework for identification of indicial response functions from flutter derivatives of long-span bridges[J]. Engineering Structures, 2021, 244: No.112727. |
22 | 张伟峰, 张志田, 张显雄, 等. 三类气动导纳数值识别方法的适应性研究[J]. 空气动力学学报, 2019, 37(2): 216-225. |
Zhang Wei-feng, Zhang Zhi-tian, Zhang Xian-xiong, et al. Applicability study on three numerical methods for identifying aerodynamic admittances[J]. Acta Aerodynamica Sinica, 2017, 37(2): 216-225. | |
23 | Chen W, Zhu Z. Numerical simulation of wind turbulence by DSRFG and identification of the aerodynamic admittance of bridge decks[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 1515-1535. |
24 | 王浩, 李爱群. 斜风作用下大跨度桥梁抖振响应时域分析(II):现场实测验证[J]. 土木工程学报, 2009, 42(10): 81-87. |
Wang Hao, Li Ai-qun. Time-domain analysis on buffeting response of long span bridge under oblique wind (II): field measurement validation[J]. China Civil Engineering Journal, 2009, 42(10): 81-87. | |
25 | 王浩, 李爱群, 焦常科, 等. 基于规范及实测风谱的苏通大桥抖振响应对比研究[J]. 土木工程学报, 2011, 44(10): 91-97. |
Wang Hao, Li Ai-qun, Jiao Chang-ke, et al. Comparable study on the buffeting response of sutong bridge based on specification and measured wind power spectrum[J]. China Civil Engineering Journal, 2011, 44(10): 91-97. | |
26 | 王浩, 陶天友, 郭彤, 等. 基于实测与规范风谱的三塔悬索桥抖振性能对比[J]. 东南大学学报:自然科学版, 2013, 43(5): 986-992. |
Wang Hao, Tao Tian-you, Guo Tong, et al. Comparable study on buffeting performance of triple-tower suspension bridge based on measured wind spectrum and specification wind spectrum[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 986-992. | |
27 | 喻梅, 廖海黎, 李明水, 等. 大跨度桥梁斜风作用下抖振响应现场实测及风洞试验研究[J]. 实验流体力学, 2013, 27(3): 51-55, 76. |
Yu Mei, Liao Hai-li, Li Ming-shui, et al. Field measurement and wind tunnel test of buffeting response of long-span bridge under skew wind[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 51-55, 76. | |
28 | Cheynet E, Jakobsen J B, Snæbjörnsson J. Buffeting response of a suspension bridge in complex terrain[J]. Engineering Structures, 2016, 128: 474-487. |
29 | Xu F, Ma Z, Zeng H, et al. A new method for studying wind engineering of bridges: large-scale aeroelastic model test in natural wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: No.104234. |
30 | 刘波, 彭运动, 侯满. 贵州都格北盘江大桥主桥设计及关键技术[J]. 桥梁建设, 2018, 48(6): 81-86. |
Liu Bo, Peng Yun-dong, Hou Man. Design and key technology of main bridge of Beipanjiang Bridge[J]. Bridge Construction, 2018, 48(6): 81-86. | |
31 | 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. |
Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. | |
32 | Hu L, Xu Y L, Zhu Q, et al. Tropical storm-induced buffeting response of long-span bridges: enhanced nonstationary buffeting force model[J]. Journal of Structural Engineering, 2017, 143(6): No.04017027. |
33 | 陶天友. 台风作用下大跨斜拉桥抖振非平稳效应模拟与实测研究[D]. 南京:东南大学交通学院, 2018. |
Tao Tian-you. Simulation and measurement analysis on nonstationary effects of buffeting responses of a long-span cable-stayed bridge under typhoon actions[D]. Nanjing: School of Transportation, Southeast University, 2021. | |
34 | Hao J M, Wu T. Downburst-induced transient response of a long-span bridge: a CFD-CSD-based hybrid approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 273-286. |
35 | 归柯庭, 钟文琪. 高等流体力学(一)[M]. 北京: 科学出版社, 2018. |
36 | 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005. |
37 | 聂若鹰. 风力等级划分参考表[J]. 气象水文海洋仪器, 2007, 81(1): 67. |
Nie Ruo-ying. Reference table of wind speed classification[J]. Meteorological, Hydrological and Marine Instruments, 2007, 81(1): 67. | |
38 | 党嘉敏. 栏杆展向布置形式对直腹板钢箱梁涡振响应的影响[D]. 西安: 长安大学公路学院, 2021. |
Dang Jia-min. The effect of railing spanwise arrangement on vortex-induced vibration of steel box girder with vertical webs[D]. Xi'an: School of Highway, Chang'an University, 2021. | |
39 | Han Y, Shen L, Xu G, et al. Multiscale simulation of wind field on a long-span bridge site in mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 260-274. |
40 | Huang G, Cheng X, Peng L, et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 80-90. |
41 | 庞加斌. 沿海和山区强风特性的观测分析与风洞模拟研究[D]. 上海: 同济大学土木工程学院, 2006. |
Pang Jia-bin. Field investigation and wind tunnel simulation of strong wind characteristics in coastal and mountainous regions[D]. Shanghai: College of Civil Engineering, Tongji University, 2021. | |
42 | . Hydrometry-velocity-area methods using current-meters-collection and processing of data for determination of uncertainties in flow measurement [S]. |
43 | 杨赐. 风与人群荷载共同作用下人行悬索桥的振动响应[D]. 西安:长安大学公路学院, 2018. |
Yang Ci. Vibration response of pedestrian suspension bridge under the combination of wind load and crowd load[D]. Xi'an: School of Highway, Chang'an University, 2018. |
[1] | 王华,王龙林,张子墨,何昕. 基于裂缝宽度变化的连续刚构桥安全性预警技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1650-1657. |
[2] | 冯宇,郝键铭,王峰,张久鹏,黄晓明. 非平稳极端风作用下大跨桥梁瞬态风致效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1638-1649. |
[3] | 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620. |
[4] | 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600. |
[5] | 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565. |
[6] | 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611. |
[7] | 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380. |
[8] | 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111. |
[9] | 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495. |
[10] | 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816. |
[11] | 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873. |
[12] | 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652. |
[13] | 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078. |
[14] | 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755. |
[15] | 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762. |
|