吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1105-1113.doi: 10.13229/j.cnki.jdxbgxb.20220715

• 计算机科学与技术 • 上一篇    

遥感图像密集小目标全方位精准检测算法

张云佐1,2(),郭威1,李文博1   

  1. 1.石家庄铁道大学 信息科学与技术学院,石家庄 050043
    2.河北省电磁环境效应与信息处理重点实验室,石家庄 050043
  • 收稿日期:2022-06-07 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:张云佐(1984-),男,副教授,博士. 研究方向:计算机视觉,人工智能,大数据. E-mail: zhangyunzuo888@sina.com
  • 基金资助:
    国家自然科学基金项目(61702347);河北省自然科学基金项目(F2022210007);中央引导地方科技发展项目(226Z0501G);河北省高等学校科学技术研究项目(ZD2022100)

Omnidirectional accurate detection algorithm for dense small objects in remote sensing images

Yun-zuo ZHANG1,2(),Wei GUO1,Wen-bo LI1   

  1. 1.School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Hebei Key Laboratory of Electromagnetic Environmental Effects and Information Processing,Shijiazhuang 050043,China
  • Received:2022-06-07 Online:2024-04-01 Published:2024-05-17

摘要:

针对遥感图像中目标排列密集且方向不相同,导致现有检测算法难以准确定位实例目标的问题,提出了一种遥感图像密集小目标全方位精准检测算法。首先,为提升特征提取能力,在主干网络的残差结构中引入Meta-ACON激活函数,自适应地学习信道特征的重要性;其次,提出一种加强连接特征金字塔网络,重新设计了用于深浅层特征融合的侧向连接部分,并在同层次特征图输入与输出之间添加了跳跃连接,丰富特征语义信息;再次,引入角度预测分支,使用环形平滑标签方法将角度回归问题转化为分类问题,在实现目标框旋转的同时解决了旋转框边界突变的问题;最后,设计针对旋转检测框的后处理方法(Rotate-Soft-NMS),通过抑制检测框的置信度去除相邻的重复旋转检测框。在DOTA数据集上的实验结果表明:该算法的平均精度均值达到76.15%,相比于基准模型YOLOv5m提升了5.22%,与其他先进算法相比取得了最好的检测结果。本文算法对复杂遥感场景的目标具有更优的检测效果。

关键词: 计算机应用, 遥感目标检测, Meta-ACON激活函数, 加强连接特征金字塔网络, 角度预测, 旋转检测框

Abstract:

Due to the dense arrangement and different directions of objects in remote sensing images, the existing detection algorithms are difficult to locate the instance objects accurately. Therefore, this paper proposed an omnidirectional accurate detection algorithm for dense small objects in remote sensing images. In order to improve the ability of feature extraction, the meta-ACON activation function was introduced into the residual structure of the backbone network to adaptively learn the importance of channel features. A new strengthen tconnection feature pyramid network was proposed. The lateral connection part for deep and shallow feature fusion was redesigned, and a jump connection was added between the input and output of the same level feature map to enrich the feature semantic information. The angle prediction branch was introduced, and the circular smooth label method was used to transform the angle regression problem into a classification problem. While realizing the rotation of the object frame, the problem of sudden change of the boundary of the rotation frame was solved. A post-processing method (Rotate-Soft-NMS) for rotation detection frame was designed to remove adjacent repeated rotation detection frames by suppressing the confidence of the detection frame. The experimental results on DOTA dataset show that the mAP of the proposed algorithm is 76.15%, which is 5.22% higher than the benchmark model YOLOv5m, and has achieved the best detection results compared with other advanced algorithms. The algorithm in this paper has achieved better detection results for complex remote sensing images.

Key words: computer application, remote sensing object detection, Meta-ACON activation function, strengthen connection feature pyramid network, angle prediction, rotation detection box

中图分类号: 

  • TP751.1

图1

算法网络结构图"

图2

FPN结构图"

图3

SC-FPN结构图"

图4

SC-FPN的侧向连接结构示意图"

图5

旋转框角度定义方法"

图6

CSL示意图"

图7

DOTA数据集样例"

表1

DOTA数据集上各组件的消融实验"

模型激活函数CSLSC-FPN后处理mAP/%FPS/(帧·s-1
Leaky ReLU//R-NMS70.9329.52
Meta-ACON//R-NMS71.6129.81
Meta-ACON/R-NMS73.8528.34
Meta-ACONR-NMS75.5427.40
Meta-ACONRS-NMS76.1527.76

表2

不同窗口半径下的检测性能比较"

r0246
mAP/%70.1673.8572.3371.64

表3

不同算法模型在DOTA测试集上的结果对比 (%)"

模型mAP

PL

BD

BR

GTF

SV

LV

SH

TC

BC

ST

SBF

RA

HA

SP

HC
RRPN561.01

88.52

71.20

31.66

59.30

51.85

56.19

57.25

90.81

72.84

67.38

56.69

52.84

53.08

51.94

53.58
RoI Transformer769.56

88.64

78.52

43.44

75.92

68.81

73.68

83.59

90.74

77.27

81.46

58.39

53.54

62.83

58.93

47.67
R3Det1771.69

89.54

81.99

48.46

62.52

70.48

74.29

77.54

90.80

81.39

83.54

61.97

59.82

65.44

67.46

60.05
SCRDet1072.61

89.98

80.65

52.09

68.36

68.36

60.32

72.41

90.85

87.94

86.86

65.02

66.68

66.25

68.24

65.21
CFC-Net1873.50

89.08

80.41

52.41

70.02

76.28

78.11

87.21

90.89

84.47

85.64

60.51

61.52

67.82

68.02

50.09
APE1175.75

89.96

83.62

53.42

76.03

74.01

77.16

79.45

90.83

87.15

84.51

67.72

60.33

74.61

71.84

65.55
DODet1975.89

89.61

83.10

51.43

72.02

79.16

81.99

87.71

90.89

86.53

84.56

62.21

65.38

71.98

70.79

61.93
R2-FRCNN2076.02

89.10

81.22

54.47

72.97

79.99

82.28

87.64

90.54

87.31

86.33

54.20

68.18

76.12

70.83

59.19
本文76.15

91.24

83.92

55.53

68.12

79.32

83.48

88.41

89.56

85.22

85.85

61.16

64.85

73.58

69.14

62.85

图8

DOTA数据集检测结果"

1 曲优, 李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报: 工学版, 2022, 52(1): 162-173.
Qu You, Li Wen-hui. Single-stage rotated object detection network based on anchor transformation[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173.
2 韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 438-461.
Han Jin-hui, Wei Yan-tao, Peng Zhen-ming, et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51(4): 438-461.
3 Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
4 董超, 刘晶红, 徐芳, 等. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报: 工学版, 2019, 49(4): 1369-1376.
Dong Chao, Liu Jing-hong, Xu Fang, et al. Fast ship detection in optical remote sensing images[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
5 Nabati R, Qi H R. RRPN: radar region proposal network for object detection in autonomous vehicles[C]∥IEEE International Conference on Image Processing, Piscataway, USA, 2019: 3093-3097.
6 Liu Z K, Hu J G, Weng L B, et al. Rotated region based cnn for ship detection[C]∥IEEE International Conference on Image Processing, Piscataway, USA, 2017: 900-904.
7 Ding J, Xue N, Long Y, et al. Learning roi transformer for oriented object detection in aerial images[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2019: 2849-2858.
8 Long H, Chung Y, Liu Z B, et al. Object detection in aerial images using feature fusion deep networks[J]. IEEE Access, 2019, 7: 30980-30990.
9 Wang Y S, Zhang Y, Zhang Y, et al. SARD: Towards scale-aware rotated object detection in aerial imagery[J]. IEEE Access, 2019, 7: 173855-173865.
10 Yang X, Yang J R, Yan J C, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]∥IEEE/CVF International Conference on Computer Vision, Piscataway, USA, 2019: 8232-8241.
11 Zhu Y X, Du J, Wu X Q. Adaptive period embedding for representing oriented objects in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7247-7257.
12 Chen L C, Liu C S, Chang F L, et al. Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery[J]. Neurocomputing, 2021,451:67-80.
13 Qian W, Yang X, Peng S L, et al. Learning modulated loss for rotated object detection[C]∥The 35th AAAI Conference on Artificial Intelligence, Palo Alto,USA, 2021: 2458-2466.
14 Ma N N, Zhang X Y, Liu M, et al. Activate or not: Learning customized activation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA, 2021: 8032-8042.
15 Bodla N, Singh B, Chellappa R, et al. Soft-NMS --improving object detection with one line of code[C]∥IEEE International Conference on Computer Vision, Piscataway, USA, 2017: 5561-5569.
16 Xia G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2018: 3974-3983.
17 Yang X, Yan J C, Feng T H. R3Det: Refined single-stage detector with feature refinement for rotating object[C]∥The 35th AAAI Conference on Artificial Intelligence. Palo Alto,USA, 2021: 3163-3171.
18 Ming Q, Miao L J, Zhou Z Q, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.3095186.
19 Cheng G, Yao Y Q, Li S Y, et al. Dual-Aligned oriented detector[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.3149780.
20 朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究[J]. 自动化学报, 2023, 49(2): 415-424.
Zhu Yu, Fang Guan-shou, Zheng Bing-bing, et al. Research on detection method of refined rotated boxes in remote sensing[J]. Journal of Automatica Sinica, 2023, 49(2): 415-424.
[1] 梁礼明,周珑颂,尹江,盛校棋. 融合多尺度Transformer的皮肤病变分割算法[J]. 吉林大学学报(工学版), 2024, 54(4): 1086-1098.
[2] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[3] 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.
[4] 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619.
[5] 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648.
[6] 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379.
[7] 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387.
[8] 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108.
[9] 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304.
[10] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[11] 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457.
[12] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[13] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[14] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[15] 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!