吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1688-1700.doi: 10.13229/j.cnki.jdxbgxb.20221079

• 交通运输工程·土木工程 • 上一篇    

装配式小箱梁桥内力横向分布系数建议公式

张彦玲1,2(),贾云飞1,2,贾晓远1,2,郑旺1,2,李运生1,2()   

  1. 1.石家庄铁道大学 土木工程学院,石家庄 050043
    2.石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室,石家庄 050043
  • 收稿日期:2022-08-24 出版日期:2024-06-01 发布日期:2024-07-23
  • 通讯作者: 李运生 E-mail:06mzhang@163.com;liysh70@163.com
  • 作者简介:张彦玲(1973-),女,教授,博士.研究方向:桥梁结构分析,组合结构桥梁.E-mail:06mzhang@163.com
  • 基金资助:
    国家自然科学基金项目(51778377);河北省大型结构健康诊断与控制重点实验室开放基金项目(KLLSHMC2112)

Proposed formulae for transverse distribution factor of internal forces of prefabricated small box-girder bridge

Yan-ling ZHANG1,2(), JIAYun-fei1,2,Xiao-yuan JIA1,2,Wang ZHENG1,2,Yun-sheng LI1,2()   

  1. 1.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2022-08-24 Online:2024-06-01 Published:2024-07-23
  • Contact: Yun-sheng LI E-mail:06mzhang@163.com;liysh70@163.com

摘要:

为了采用横向分布系数的概念简化多主梁装配式连续梁桥、斜交桥和曲线桥的受力分析过程,基于某多主梁装配式连续小箱梁桥构建了桥梁数据库,采用梁格法建立了每座桥梁的有限元模型,研究了主梁间距、高跨比、斜交角和圆心角对内力横向分布系数的影响规律,并通过统计回归方法给出了内力横向分布系数建议公式。研究结果表明:弯矩和剪力横向分布系数均随主梁间距的增大而增大;随主梁高跨比λ的增大,跨中正弯矩增大,但跨中剪力、支点负弯矩和支点剪力均减小;斜交桥和曲线桥内力横向分布系数可在直线正交桥公式基础上乘以修正因子得到。在本文的计算模型范围内,采用建议公式得到的多主梁装配式连续梁桥、斜交桥和曲线桥的内力横向分布系数均与有限元结果吻合良好,且可通过沿纵向的简化包络图得到任意截面的内力横向分布系数。

关键词: 桥梁工程, 装配式桥梁, 横向分布系数, 连续小箱梁桥, 斜交桥, 曲线桥

Abstract:

In order to simplify the stress analysis process by using the concept of transverse distribution factor (TDF) for the multi-girder fabricated continuous girder bridges, skew bridges and curved bridges, the bridge database based on a multi girder fabricated continuous small box girder bridge was established, and the finite element model of each bridge was built by using the grillage method. The influence of the girder spacing, height span ratio, skew angle and center angle on the transverse distribution coefficient of internal force was investigated, and the formulae of the transverse distribution factor of internal forces were proposed by statistical regression method. The results show that the transverse distribution factors of bending moment and shear force increase with the development of the girder spacing; With the increase of the height span ratio of the main beam λ, the transverse distribution factors for mid-span positive bending moment increases, but decrease for that of the mid-span shear force and the negative bending moment and shear force at the support; The transverse distribution factor of internal force in skew bridges and curved bridges can be obtained by multiplying the modification factor with the formula of straight orthogonal bridges. Within the scope of the calculation model in this paper, the transverse distribution factors of internal forces of multi-girder fabricated continuous girder bridges, skew bridges and curved bridges obtained by the proposed formulae are in good agreement with the finite element results, and the transverse distribution factors of internal forces of any section can be obtained by the simplified envelope diagram along the longitudinal direction.

Key words: bridge construction, prefabricated bridge, transverse distribution factor, continuous small box-girder bridge, skewed bridge, curved bridge

中图分类号: 

  • U448.25

图1

桥梁横断面图/cm"

图2

支座布置及工况图"

图3

梁格法模型结果与文献[10]结果的对比"

图4

内力横向分布影响线"

图5

边梁内力横向分布系数随λ变化的曲线拟合图"

图6

中梁内力横向分布系数随λ变化的曲线拟合图"

表1

内力横向分布系数随主梁高跨比λ变化的拟合公式"

内力类型位置工况(i拟合公式形式相关系数R2
Ml/2边梁1mλ =0.652 8e-0.000 2/(λ-0.038 3)0.985 0
中梁2mλ =0.640 9e-0.000 7/(λ-0.027 3)0.986 9
M0边梁3mλ =0.644 8e0.000 7/(λ+0.004 5)0.988 7
中梁4mλ =0.622 6e0.003 0/(λ+0.068 8)0.989 0
Q0边梁5mλ =0.740 5e0.020 7/(λ-0.014 7)0.986 8
中梁6mλ =0.746 0e0.025 1/(λ+0.000 1)0.983 8
Ql/2边梁7mλ =0.639 1e0.002 1/(λ+0.129 8)0.991 2
中梁8mλ =0.606 6e0.000 9/(λ+0.006 4)0.989 7

图7

边梁内力横向分布系数随D变化的曲线拟合图"

图8

中梁内力横向分布系数随D变化的曲线拟合图"

表2

内力横向分布系数随主梁间距D变化的拟合公式"

内力类型位置工况(i拟合公式相关系数R2
Ml/2边梁1mD =0.268 7D1.106 00.999 8
中梁2mD =0.308 7D0.959 00.999 3
M0边梁3mD =0.263 1D1.136 50.999 6
中梁4mD =0.309 5D0.924 00.998 2
Q0边梁5mD =0.682 6D0.752 80.994 6
中梁6mD =0.742 1D0.592 10.999 9
Ql/2边梁7mD =0.255 1D1.159 10.999 0
中梁8mD =0.350 0D0.906 70.999 6

表3

拟合系数bD 、bλ 和cλ"

内力

类型

位置

工况

i

主梁间距D主梁高跨比λ=H/L
bDR2bλcλR2
Ml/2边梁11.106 00.999 8-0.000 2-0.038 30.985 0
中梁20.959 00.999 3-0.000 7-0.027 30.986 9
M0边梁31.136 50.999 60.000 70.004 50.986 7
中梁40.924 00.998 20.003 00.068 80.989 0
Q0边梁50.752 80.994 60.020 7-0.014 70.986 8
中梁60.592 10.999 90.025 10.000 60.983 8
Ql/2边梁71.159 10.999 00.002 10.129 80.991 2
中梁80.906 70.999 60.000 90.006 40.989 7

表4

直线正交桥内力横向分布系数拟合公式"

内力类型位置工况(i拟合公式形式ki
Ml/2边梁1m1=k1D1.106 0e-0.000 2/(λ-0.038 3)0.271 9
中梁2m2=k2D0.959 0e-0.000 7/(λ-0.027 3)0.313 8
M0边梁3m3=k3D1.136 5e0.000 7/(λ+0.004 5)0.260 6
中梁4m4=k4D0.924 0e0.003 0/(λ+0.068 8)0.321 9
Q0边梁5m5=k5D0.752 8e0.020 7/(λ-0.014 7)0.425 1
中梁6m6=k6D0.592 1e0.025 1/(λ+0.000 6)0.543 0
Ql/2边梁7m7=k7D1.1591e0.002 1/(λ+0.129 8)0.259 0
中梁8m8=k8D0.906 7e0.000 9/(λ+0.006 4)0.329 5

表5

验算模型"

编号跨度/m主梁宽度/m主梁片数主梁高度/m高跨比
14×101.87580.90.090
24×121.87580.90.075
34×201.87581.00.050
44×202.22051.80.090
54×242.22051.20.050
64×162.50061.60.100
74×202.50061.50.075
84×282.50061.60.057
94×103.00050.90.090
104×143.00050.90.064
114×223.00051.10.050
124×205.00031.80.090
134×205.00031.70.085
144×245.00031.80.075
154×285.00031.80.064
164×325.00031.80.056

图9

边梁横向分布系数对比图"

图10

中梁横向分布系数对比图"

图11

横向分布系数随斜交角变化规律图"

图12

边梁斜交修正因子ks 曲线拟合图"

图13

中梁斜交修正因子ks 曲线拟合图"

表6

斜交修正因子ks"

内力类型位置工况(i拟合公式形式
Ml/2边梁11.019 6-0.019 2(cos θ10.83
中梁21.180 8-0.099 7(cos θ0.96
M0边梁31.015 8+0.034 5(cos θ3.94
中梁41.000 7+0.210 2(cos θ1.96
Q0边梁50.880 9+0.479 9(cos θ0.55
中梁61.191 3+0.039 4(cos θ2.15
Ql/2边梁70.902 6+0.023 0(cos θ0.62
中梁81.002 6+0.056 4(cos θ2.67

图14

小箱梁构造图"

图15

斜交桥边梁内力横向分布系数误差图"

图16

斜交桥中梁内力横向分布系数误差图"

图17

横向分布系数随圆心角变化规律图"

图18

边梁曲线修正因子kc 曲线拟合图"

图19

中梁曲线修正因子kc 曲线拟合图"

表7

曲线修正因子kc"

内力类型位置工况(i拟合公式形式
Ml/2边梁11.004 2-0.010 3(cos φ1.64
中梁21.004 6-0.062 7(cos φ1.54
M0边梁30.994 5+0.002 6(cos φ1.15
中梁40.920 7+0.003 2(cos φ1.11
Q0边梁51.057 2-0.395 8(sin φ0.64
中梁60.900 8-0.201 9(sin φ0.78
Ql/2边梁70.979 0-0.001 7(sin φ1.84
中梁80.894 0-0.001 0(sin φ4.67

图20

曲线桥边梁内力横向分布系数误差图"

图21

曲线桥中梁内力横向分布系数误差图"

图22

弯矩横向分布系数包络图"

图23

剪力横向分布系数包络图"

1 American Association of State Highway & Transportation Officials. AASHTO LRFD bridge design specifications[EB/OL].[2022-08-15].
2 Bernardi P, Cerioni R, Leurini F, et al. A design method for the prediction of load distribution in hollow-core floors[J]. Engineering Structures, 2016, 123: 473-481.
3 Zhao Y, Cao X Z, Zhou Y J, et al. Lateral load distribution for hollow slab bridge: field test investigation [J]. International Journal of Concrete Structures and Materials, 2020, 14:No. 22.
4 战家旺, 高胜星, 闫宇智,等. 基于模型修正的公路简支板梁桥荷载横向分布系数计算方法[J]. 中国公路学报, 2019, 32(5): 72-79.
Zhan Jia-wang, Gao Sheng-xing, Yan Yu-zhi, et al.A calculation method for transverse load distribution coefficient of highway simply-supported slab-girder bridges based on model updating[J]. China J Highw Transp, 2019,32(5): 72-79.
5 王渠, 吴庆雄, 陈康明, 等. 拼宽空心板桥荷载横向分布计算方法[J]. 中国公路学报, 2019, 32(7): 57-65.
Wang Qu, Wu Qing-xiong, Chen Kang-ming, et al. Calculation method of load transverse-distribution for widening hollow slab bridge[J]. China J Highw Transp, 2019,32(7): 57-65.
6 Tevfik T, Mary B D H, John B M. Live load distribution factors for spread slab beam bridges[J]. J Bridge Eng, 2017, 22(10): No. 04017067.
7 邬晓光, 魏俊杰. 宽幅装配式箱梁桥荷载横向分布系数计算[J]. 沈阳建筑大学学报:自然科学版, 2020, 36(1): 76-85.
Wu Xiao-guang, Wei Jun-jie. Calculation of load transverse distribution coefficient of wide assembled box girder bridge[J]. Journal of Shenyang Jianzhu University (Natural Science), 2020,36(1): 76-85.
8 何伟南, 周怀治, 王银辉. 多室宽箱梁桥横向分布计算的刚接梁法[J]. 公路交通科技:应用技术版, 2016, 12(1): 212-216.
He Wei-nan, Zhou Huai-zhi, Wang Yin-hui. Rigid-jointed girder method for transverse distribution calculating of wide multi-cell box girder bridges[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2016,12(1): 212-216.
9 闫林君, 张经伟, 罗奎. 装配式多主梁钢-混组合梁桥的荷载横向分布研究[J]. 公路交通科技, 2020, 37(3): 59-69.
Yan Lin-jun, Zhang Jing-wei, Luo Kui. Study on lateral load distribution of prefabricated multi-girder steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2020, 37(3): 59-69.
10 Kong S Y, Zhuang L D, Tao M X, et al. Load distribution factor for moment of composite bridges with multi-box girders[J]. Engineering Structures, 2020, 215(10): No. 110716.
11 Ma L, Zhou L Y, Wan S. Study of the calculation method of lateral load distribution on a continuous composite box girder bridge with corrugated steel webs[J]. Journal of Highway and Transportation Research and Development, 2014, 8(2): 42-46.
12 聂鑫, 樊健生, 付裕. 箱形截面连续组合梁桥的荷载横向分布[J]. 清华大学学报:自然科学版, 2009, 49(12): 1930-1933, 1938.
Nie Xin, Fan Jian-sheng, Fu Yu. Transverse load distribution on box section continuous composite steel-concrete bridges[J]. Journal of Tsinghua University (Sci&Tech), 2009,49(12): 1930-1933, 1938.
13 余泉. 多箱式连续小箱梁桥受力特性的分析及其试验研究[D]. 杭州: 浙江大学建筑工程学院, 2006.
Yu Quan. Analysis of structure behavior of continuous multi-box girder bridges and its experimental study[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2006.
14 Huang H X, Shenton H W. Chajes M J. Load distribution for a highly skewed bridge: testing and analysis[J]. J Bridge Eng, 2004, 9(6): 558-562.
15 Fatemi S J, Mohamed Ali M S, Sheikh A H. Load distribution for composite steel-concrete horizontally curved box girder bridge[J]. Journal of Constructional Steel Research, 2016, 116: 19-28.
16 魏志刚, 刘寒冰, 时成林, 等. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报:工学版, 2018, 48(1): 105-112.
Wei Zhi-gang, Liu Han-bing, Shi Cheng-lin, et al. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 105-112.
17 张学龙. 小箱梁的梁格划分及虚拟横梁刚度分析研究[D]. 西安: 长安大学公路学院, 2013.
Zhang Xue-long. Study and analysis on beam meshing and the virtual beam stiffness of Small box girder [D]. Xi'an: School of Highway, Chang'an University, 2013.
18 管路, 贾鹏, 向天华,等. 组合小箱梁横向分布系数影响因素分析研究[J]. 福建建材, 2020(6): 10-13.
Guan Lu, Jia Peng, Xiang Tian-hua, et al. Analysis of the influencing factors on the transverse distribution factor of the composite small box girder[J]. Fujian Building Materials, 2020(6): 10-13.
[1] 张春雷,邵长宇,苏庆田,戴昌源. 球扁钢肋钢纤维混凝土组合桥面板正弯矩受力性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1634-1642.
[2] 黄汉辉,陈康明,吴庆雄. 钢管混凝土桁式弦杆组合连续梁抗弯性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1665-1676.
[3] 邵长江,崔皓蒙,漆启明,庄卫林. 近断层大跨RC轻柔拱桥纵向阻尼器减震研究[J]. 吉林大学学报(工学版), 2024, 54(5): 1355-1367.
[4] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[5] 张洪,朱志伟,胡天宇,龚燕峰,周建庭. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 749-760.
[6] 韩智强,谢刚,卓亚娟,骆佐龙,李华腾. 基于车轮-桥面相干激励的大跨连续梁桥振动响应[J]. 吉林大学学报(工学版), 2024, 54(2): 436-444.
[7] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[8] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[9] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[10] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[11] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[12] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[13] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[14] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[15] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!