吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3220-3230.doi: 10.13229/j.cnki.jdxbgxb.20221645

• 交通运输工程·土木工程 • 上一篇    下一篇

考虑多车响应的网联混行车流跟驰模型及稳态分析

宋慧1(),曲大义1(),王少杰1,王韬1,2,杨子奕1   

  1. 1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520
    2.淄博职业学院 人工智能与大数据学院,山东 淄博 255300
  • 收稿日期:2022-12-31 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 曲大义 E-mail:songhui@qut.edu.cn;dayiqu@qtech.edu.cn
  • 作者简介:宋慧(1981-),女,讲师,博士.研究方向:车路协同及安全控制. E-mail: songhui@qut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52272311)

Connected mixed traffic flow car-following model and stability analysis considering multiple vehicles response

Hui SONG1(),Da-yi QU1(),Shao-jie WANG1,Tao WANG1,2,Zi-yi YANG1   

  1. 1.School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China
    2.School of Artificial Intelligence and Big Data,Zibo Vocational Institute,Zibo 255300,China
  • Received:2022-12-31 Online:2024-11-01 Published:2025-04-24
  • Contact: Da-yi QU E-mail:songhui@qut.edu.cn;dayiqu@qtech.edu.cn

摘要:

为研究网联混行车流跟驰特性,本文建立网联混行车流跟驰模型帮助理解其跟驰特性,从而提高混行车流稳定性。考虑前后车头间距最优速度与最优速度记忆项,多前车速度差与加速度差,构建适用于智能网联汽车(CAV)与人工驾驶车辆(HV)交互渗透的混行车流跟驰模型(MFROVCM)。对模型进行稳定性分析,结果显示,MFROVCM模型与OVCM模型相比,不稳定区域减少53.17%;与BL-OVCM模型相比,不稳定区域减少15.44%,模型稳定性优于其他对比模型。数值仿真结果显示:相同扰动条件下,MFROVCM模型具有更好的交通流致稳性能,随着CAV渗透率的增大,整体交通流速度波动幅度减小,且恢复稳定的时间逐渐减小。该模型可应用于CAV与HV混行的车流跟驰仿真,为网联混合车流的交通控制策略提供理论依据与模型基础。

关键词: 交通工程, 网联混行车流, 跟驰模型, 数值仿真, 多车响应, 最优速度记忆

Abstract:

In order to study the car-following characteristics of Internet connected mixed traffic flow, the establishment of Internet connected mixed traffic flow car-following model can help to understand its car-following characteristics and improve the stability of mixed traffic flow. Considering the optimal velocity and optimal velocity changes with memory based on front and rear headway space, the velocity difference and acceleration difference of multiple front vehicles, a car-following model named multiple front and rear optimal velocity changes with memory (MFROVCM ) which is suitable for the interactive penetration of mixed traffic flow with connected and autonomous vehicles (CAV) and human-driven vehicles (HV) was constructed. The stability analysis of the model shows: Compared with OVCM model, the unstable area is reduced by 53.17%; compared with BL-OVCM model, the unstable area is reduced by 15.44%, and the stability of MFROVCM model is better than other comparison models. The simulation results show that under the same disturbance conditions, MFROVCM model has better traffic flow stabilization performance. With the increase of CAV permeability, the fluctuation amplitude of overall traffic flow velocity decreases, and the time to restore stability gradually decreases. The model can be applied to the car-following simulation of CAV and HV mixed traffic flow, and provides a theoretical basis and model basis for the traffic controlstrategy of networked mixed traffic flow.

Key words: traffic engineering, connected mixed traffic flow, car-following model, numerical simulation, multiple vehicles response, optimal velocity changes with memory

中图分类号: 

  • U491

图1

混行车流跟驰"

图2

CAV退化为AV"

表1

模型参数值"

项目αIλIkIγIτP
I=10.80.100.000.100.20.9
I=20.90.150.050.150.20.9
I=31.00.200.100.200.20.9

表2

对比模型参数设置"

模型αλkγτP
OV1.00.00.00.00.01.0
FVD1.00.20.00.00.01.0
OVCM1.00.20.00.20.21.0
BLVD1.00.20.00.00.00.9
BL-OVCM1.00.20.00.20.20.9
MFROVCM1.00.20.10.20.20.9

图3

模型中性稳定性曲线"

图4

车辆速度分布"

图5

车辆加速度分布"

图6

不同渗透率速度分布"

1 Zhang X, Jarrett D F. Stability analysis of the classical car-following model[J]. Transportation Research B, 1997, 31: 441-462.
2 纪艺, 史昕, 赵祥模. 基于多前车信息融合的智能网联车辆跟驰模型[J]. 计算机应用, 2019, 39(12): 3685-3690.
Ji Yi, Shi Xin, Zhao Xiang-mo. Car-following model for intelligent connected vehicles based on multiple headway information fusion[J]. Journal of Computer Applications, 2019, 39(12): 3685-3690.
3 Milanes V, Shladover S E, Spring J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305.
4 宗芳, 王猛, 贺正冰. 考虑多车影响的分子动力学智能网联跟驰模型[J]. 交通运输系统工程与信息, 2022, 22(1): 37-48.
Zong Fang, Wang Meng, He Zheng-bing. A molecular dynamics-based car-following model for connected and automated vehicles considering impact of multiple vehicles[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 37-48.
5 曲大义, 杨建, 陈秀锋, 等. 车辆跟驰的分子动力学特性及其模型[J]. 吉林大学学报: 工学版, 2012, 42(5): 1198-1202.
Qu Da-yi, Yang Jian, Chen Xiu-feng, et al. Molecualar kinetics behavior of car-following and its model[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(5): 1198-1202.
6 李娟, 曲大义, 刘聪, 等. 基于分子动力学的跟驰特性及其模型[J]. 公路交通科技, 2018, 35(3): 130-135.
Li Juan, Qu Da-yi, Liu Cong, et al. Car-following characteristics and its models based on molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3): 130-135.
7 秦严严, 王昊, 王炜, 等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报, 2017, 30(10): 127-136.
Qin Yan-yan, Wang Hao, Wang Wei, et al. Fundamental diagram model of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. China Journal of Highway and Transport, 2017, 30(10): 127-136.
8 Xie D F, Zhao X M, He Z B. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060-2071.
9 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194.
Wu Bing, Wang Wen-xuan, Li Lin-bo, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194.
10 宗芳, 石佩鑫, 王猛, 等. 考虑前后多车的网联自动驾驶车辆混流跟驰模型[J]. 中国公路学报, 2021, 34(7): 105-117.
Zong Fang, Shi Pei-xin, Wang Meng, et al. Connected and automated vehicle mixed-traffic car-following model considering states of multiple front and rear vehicles[J]. China Journal of Highway and Transport, 2021, 34(7): 105-117.
11 宗芳, 王猛, 曾梦, 等. 考虑多前车作用势的混行交通流车辆跟驰模型[J]. 交通运输工程学报, 2022, 22(1): 250-262.
Zong Fang, Wang Meng, Zeng Meng, et al. Vehicle following modeling mixed traffic flow considering interaction potential of multiple front vehicles[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 250-262.
12 Peng G, Lu W, He H, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science & Numerical Simulation, 2016, 40: 197-205.
13 李腾龙, 惠飞. 考虑后视和最优速度记忆的跟驰模型及仿真[J]. 计算机工程与应用, 2017, 53(12): 249-254.
Li Teng-long, Hui Fei. Numerical simulation of car-following model considering optimal velocity changes with memory and backward looking effect[J]. Computer Engineering and Applications, 2017, 53(12): 249-254.
14 Nakayama A, Sugiyama Y, Hasebe K. Effect of looking at the car that follows in an optimal velocity model of traffic flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(1): 016112.
15 高青海. 智能网联车辆跟驰模型及交通流特性研究[J]. 公路, 2021, 66(10): 229-235.
Gao Qing-hai. Research on car-following model and traffic flow characteristics of intelligent and connected vehicle[J]. Highway, 2021, 66(10): 229-235.
16 孙棣华, 张建厂, 赵敏, 等. 考虑后视效应和速度差信息的跟驰模型[J]. 四川大学学报: 自然科学版, 2012, 49(1): 115-120.
Sun Di-hua, Zhang Jian-chang, Zhao Min, et al. Effect of backward looking and velocity difference in an extended car following model[J]. Journal of Sichuan University (Natural Science Edition), 2012, 49(1): 115-120.
17 Lerner N D, Huey R W, Mcgee H W, et al. Older driver perception-reaction time for intersection sight distance and object detection. volume i: final report[J]. Gap Acceptance, 1995, 1: 33-40.
18 蔡晓禹, 蔡明, 张有节, 等. 基于车联网环境的驾驶员反应时间研究[J]. 计算机应用, 2017, 37(): 270-273.
Cai Xiao-yu, Cai Ming, Zhang You-jie, et al. Research on driver reaction time in Internet of vehicles environment[J]. Journal of Computer Applications, 2017, 37(Sup.2): 270-273.
19 Tang T, Shi W, Shang H, et al. A new car-following model with consideration of inter-vehicle communication[J]. Nonlinear Dynamics, 2014, 76(4): 2017-2023.
20 Li Y, Sun D, Liu W, et al. Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference[J]. Nonlinear Dynamics, 2011, 66(1/2): 15-28.
21 Peng G H. Stabilisation analysis of multiple car-following model in traffic flow[J]. Chinese Physics B, 2010, 19(5): 438-445.
22 Bando M, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.
23 Jiang R, Wu Q S, Zhu Z J. Full velocity difference model for a car-following theory[J]. Physical Review E Statistcal Nonlinear and Soft Matter Physics, 2001, 64(1): 017010.
[1] 陈永恒,杨家伟,孙经宇. 借道左转交叉口的网联左转车辆最佳轨迹控制[J]. 吉林大学学报(工学版), 2025, 55(2): 614-622.
[2] 马书红,张俊杰,陈西芳,廖国美. 利用出租车时序数据识别城市功能区[J]. 吉林大学学报(工学版), 2025, 55(2): 603-613.
[3] 何永明,冯佳,魏堃,万亚楠. 超高速公路曲线路段车辆制动侧滑影响因素分析[J]. 吉林大学学报(工学版), 2025, 55(2): 591-602.
[4] 金盛,李博林,薛炜. 智能网联车借用公交专用道的轨迹与信号协同优化[J]. 吉林大学学报(工学版), 2025, 55(2): 566-576.
[5] 吴娇蓉,刘旭东. 不同住房类型空间单元的建成环境对通勤方式选择的影响分析[J]. 吉林大学学报(工学版), 2025, 55(2): 554-565.
[6] 高天洋,胡大伟,姜瑞森,吴雪,刘慧甜. 基于模块化车辆的区域灵活接驳公交线路优化[J]. 吉林大学学报(工学版), 2025, 55(2): 537-545.
[7] 潘义勇,尤逸文,吴静婷. 换道事故严重程度影响因素异质性和可转移性分析[J]. 吉林大学学报(工学版), 2025, 55(2): 520-528.
[8] 孙峣,姚宝珍,白子建. 基于随机森林模型的交通拥堵疏导效果评估[J]. 吉林大学学报(工学版), 2025, 55(2): 512-519.
[9] 陈发城,鲁光泉,林庆峰,张浩东,马社强,刘德志,宋会军. 有条件自动驾驶下驾驶人接管行为综述[J]. 吉林大学学报(工学版), 2025, 55(2): 419-433.
[10] 姚荣涵,祁文彦,胡宏宇,杜筱婧,乔延峰,王立冰. 考虑公交-合乘车道的多车道元胞自动机模型[J]. 吉林大学学报(工学版), 2025, 55(1): 162-174.
[11] 李德林,陈俊先,王永岗,王露,沈照庆. 基于潜在类别模型的急陡弯路段驾驶行为辨析[J]. 吉林大学学报(工学版), 2024, 54(12): 3526-3533.
[12] 魏丽英,彭欢欢. 城市群内部出行强度的距离衰减效应[J]. 吉林大学学报(工学版), 2024, 54(11): 3199-3208.
[13] 常玉林,王逸杰,王建,孙超,张鹏,徐文倩. 考虑定制公交及公交专用道的混合逐日均衡模型[J]. 吉林大学学报(工学版), 2024, 54(11): 3209-3219.
[14] 徐进,陈正欢,廖祺硕,郑展骥,张河山. 基于心电数据的高速公路高密度互通立交驾驶负荷[J]. 吉林大学学报(工学版), 2024, 54(10): 2807-2818.
[15] 潘义勇,吴静婷,缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J]. 吉林大学学报(工学版), 2024, 54(10): 2819-2826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!