吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3740-3754.doi: 10.13229/j.cnki.jdxbgxb.20230122

• 农业工程·仿生工程 • 上一篇    下一篇

基于履带底盘的宽幅可折叠油菜割晒机设计及试验

李运通1(),万星宇1,廖庆喜1,2,刘银垒1,张青松1,2,廖宜涛1,2()   

  1. 1.华中农业大学 工学院,武汉 430070
    2.农业农村部长江中下游农业装备重点实验室,武汉 430070
  • 收稿日期:2023-02-10 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 廖宜涛 E-mail:liyuntong7188@163.com;liaoetao@mail.hzau.edu.cn
  • 作者简介:李运通(1998-),男,博士研究生.研究方向:油菜机械化生产技术与装备.E-mail:liyuntong7188@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1600502);湖北省农机装备补短板核心技术应用攻关项目(HBSNYT202216);财政部和农业农村部国家现代油菜产业技术体系项目(CARS-12)

Design and experiment of wide folding rape windrower based on crawler type power chassis

Yun-tong LI1(),Xing-yu WAN1,Qing-xi LIAO1,2,Yin-lei LIU1,Qing-song ZHANG1,2,Yi-tao LIAO1,2()   

  1. 1.College of Engineering,Huazhong Agricultural University,Wuhan 430070,China
    2.Key Laboratory of Agricultural Equipment in Mid-lower Reaches of The Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China
  • Received:2023-02-10 Online:2024-12-01 Published:2025-01-24
  • Contact: Yi-tao LIAO E-mail:liyuntong7188@163.com;liaoetao@mail.hzau.edu.cn

摘要:

针对油菜机械化分段收获效率有待提升、专用底盘利用率不高的问题,结合我国联合收割机履带式动力底盘保有量大的优势,设计了一款基于履带底盘的宽幅可折叠油菜割晒机。采用模块化设计方法,开展油菜割晒机的整体设计。提出了“先旋转-再收缩”的宽幅割台折叠方案,实现宽幅可折叠割台与常规收割机底盘配套。基于动力学与运动学分析得到割台折叠位置参数与折叠液压缸负载之间的关系,确定割台旋转点为割台架上边框距离两割台对称面950 mm处,液压缸收缩行程为700 mm。分析确定了拨禾轮、割刀、输送装置的结构和工作参数。阐明割台架与液压折叠悬挂架的载荷和约束,开展了割台展开、折叠状态的静力学分析和拓扑优化结构设计,以应力应变最小为优化目标,经对比评估,采用割台架和悬挂架初始模型材料去除率分别为85%、80%的工程化方案试制样机并开展田间试验。田间试验结果表明:割晒机割台折叠顺畅、运行平稳,割晒后油菜平均铺放角为24.4°,铺放角度差为8.52°,各项指标均满足割晒机田间转移要求和作业质量标准。该研究可为收获机具折叠割台的结构设计优化提供参考。

关键词: 农业机械化工程, 油菜, 割晒机, 宽幅可折叠, 拓扑优化, 模块化设计

Abstract:

In response to the inefficiency in the mechanized segmented harvesting of rapeseed and the low utilization rate of dedicated chassis, and combining with the advantages of the large inventory of track-type power chassis of combine harvesters in China, a wide-foldable rapeseed windrower based on a track-type chassis was designed. Adopting a modular design approach, the structure and the working operations of the windrower were explained. The combine harvester could be adjusted to be a windrower by just switching the header, and the windrower could meet the requirements of road transportation once the header was folded. The header was divided into two bilateral symmetrical parts. During the folding, both of the parts will rotate firstly and then contract to the center of the header. Based on the dynamics and kinematics, the relationship between the folding position parameters of the header and the load of the folding hydraulic cylinder was analyzed. The rotation point of the header was determined to be 950 mm from the inner side of the frame, and the contraction stroke was 700 mm. Furthermore, the structure and working parameters of the wheel, cutter and conveying device were analyzed and determined. The load and constraint of the header frame and the hydraulic folding frame were clarified. The static analysis of the unfolding and folding status of the header and the topological optimization structure design were carried out. With the minimum stress and strain as the optimization goal, the engineering scheme of the initial model material removal rate of the header frame (85%) and the hydraulic folding frame (80%) was determined by comparative evaluation. At last, the field experiment was conducted to evaluate the functions of the windrower. The results of field experiments showed that the header could fold and work smoothly. The average laying angle of the rape was 24.4°, and the difference of laying angle was 8.52°. All the indicators could meet the field transfer requirements of the windrower. This study could provide reference for the structural design and optimization of folding header for harvesting equipment.

Key words: agricultural mechanical engineering, rape, windrower, wide folding, topology optimization, modular design

中图分类号: 

  • S223.2

图1

割晒机模块化设计"

图2

宽幅可折叠油菜割晒机结构"

表1

割晒机主要参数"

参 数数值
展开尺寸(长×宽×高)/(mm×mm×mm)5 450×4 300×2 520

折叠尺寸(长×宽×高)/

(mm×mm×mm)

5 450×2 500×2 520
割幅/mm4 000
整机质量/kg4 000
配套动力/kW72
作业速度/(m·s-10.8~1.1
作业效率/(亩·h-117.3~23.8
割茬高度/mm300~400
单侧铺放通道宽度/mm700
铺放通道高度/mm650

图3

割晒机折叠过程"

图4

宽幅可折叠割晒机工艺流程图"

图5

割台折叠原理图"

图6

割台侧翻过程受力分析"

图7

割台侧翻过程水平状态受力分析"

图8

割台侧翻过程竖直状态受力分析"

图9

液压折叠装置结构"

图10

拨禾轮工作过程"

图11

输送装置结构示意图"

图12

分禾装置结构示意图"

图13

拓扑优化初始模型"

图14

网格划分模型"

表2

割台架承受的主要载荷"

主要部件质量/kg载荷/N载荷位置
割台框架--机架重心
拨禾轮47.41161.31
横割刀21.4524.32
竖割刀8.1198.53
小输送装置28.3693.44
大输送装置33.1811.05

表3

折叠悬挂架承受的主要载荷"

主要部件质量/kg载荷/N载荷位置
液压折叠装置框架--机架重心
左侧割台2957227.56
右侧割台2957227.57

图15

割台架拓扑结构和工程转化"

图16

割台架各工程方案静力学分析"

表4

割台架各工程方案参数"

优化条件去除率/%质量/kg最大应力/MPa最大变形/mm
展开状态90107.91105.990.85
9596.78127.273.38
9795.11195.733.81
折叠状态80115.23118.501.78
8597.39149.145.26
9090.70222.770.98

图17

割台架工程方案对比"

图18

折叠悬挂架拓扑结构与工程转化"

表5

折叠悬挂架各工程方案参数"

去除率/%质量/kg最大应力/MPa最大变形/mm
70179.3454.550.05
80118.6066.830.14
90100.45197.301.53

图19

折叠悬挂架各方案静力学分析"

图20

割台架和折叠悬挂架实物"

图21

优化后的割台结构"

表6

油菜基本特性参数"

参 数数值
植株高度/mm1 560
主茎秆直径/mm19.16
分枝数量/个8
第一分枝高度/mm548
种植密度/(株·m-225
角果层直径/mm510

图22

割晒机割台折叠、展开与行进试验"

图23

油菜作业效果"

表7

割晒机铺放质量参数"

测量指标左侧割台右侧割台平均值
铺放角度/(°)22.626.224.4
铺放角度差/(°)7.849.208.52
铺放宽度/mm628.6606.8617.7
铺放高度/mm502.0521.2512.1
割茬高度/mm358.3367.6362.9
1 汪波, 宋丽君, 王宗凯, 等. 我国饲料油菜种植及应用技术研究进展[J]. 中国油料作物学报, 2018, 40(5): 695-701.
Wang Bo, Song Li-jun, Wang Zong-kai, et al. Production and feeding technology of fodder-rapeseed in China[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 695-701.
2 张哲, 殷艳, 刘芳, 等. 我国油菜多功能开发利用现状及发展对策[J]. 中国油料作物学报, 2018, 40(5): 618-623.
Zhang Zhe, Yin Yan, Liu Fang, et al. Current situation and development countermeasures of Chinese rapeseed multifunction development and utilization[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 618-623.
3 吴崇友, 丁为民, 石磊, 等. 油菜分段收获捡拾脱粒机捡拾损失响应面分析[J]. 农业机械学报, 2011, 42(8): 89-93.
Wu Chong-you, Ding Wei-min, Shi Lei, et al. Response surface analysis of pickup losses in two-stage harvesting for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 89-93.
4 万星宇, 廖庆喜, 廖宜涛, 等. 油菜全产业链机械化智能化关键技术装备研究现状及发展趋势[J]. 华中农业大学学报, 2021, 40(2): 24-44.
Wan Xing-yu, Liao Qing-xi, Liao Yi-tao, et al. Situation and prospect of key technology and equipment in mechanization and intelligentization of rapeseed whole industry chain[J]. Journal of Huazhong Agricultural University, 2021, 40(2): 24-44.
5 刘德军, 赵秀荣, 高连兴, 等. 不同收获方式含水率对油菜收获物流损失的影响[J]. 农业工程学报, 2011, 27(10): 339-342.
Liu De-jun, Zhao Xiu-rong, Gao Lian-xing, et al. Effect of moisture content on rape harvest logistics losses under different harvest methods[J]. Transactions of the CSAE, 2011, 27(10): 339-342.
6 关卓怀, 江涛, 李海同, 等. 倾斜输送式油菜割晒机铺放质量分析与试验[J]. 农业工程学报, 2021, 37(4): 59-68.
Guan Zhuo-huai, Jiang Tao, Li Hai-tong, et al. Analysis and test of the laying quality of inclined transportation rape windrower[J]. Transactions of the CSAE, 2021, 37(4): 59-68.
7 万星宇, 舒彩霞, 廖庆喜, 等. 高地隙履带自走式中间条铺油菜割晒机设计与试验[J]. 农业机械学报, 2022, 53(9): 109-121.
Wan Xing-yu, Shu Cai-xia, Liao Qing-xi, et al. Design and experiment of self-propelled middle-placement rape windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 109-121.
8 陈延鑫. 玉米收获机折叠式割台的试验与研究[D]. 淄博:山东理工大学农业工程与食品科学学院, 2012.
Chen Yan-xin. Experiment and research on the foldable header of corn harvester[D]. Zibo: College of Agricultural Engineering and Food Science, Shandong University of Technology, 2012.
9 陈延鑫, 张道林, 许振冻, 等. 折叠式玉米收获机割台的试验[J]. 农机化研究, 2013, 35(2): 117-120.
Chen Yan-xin, Zhang Dao-lin, Xu Zhen-dong, et al. Experiment of the foldable header of corn harvester[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 117-120.
10 廖中源, 王英俊, 王书亭. 基于拓扑优化的变密度点阵结构体优化设计方法[J]. 机械工程学报, 2019, 55(8): 65-72.
Liao Zhong-yuan, Wang Ying-jun, Wang Shu-ting. Graded-density lattice structure optimization design based on topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(8): 65-72.
11 张明, 刘文斌, 李闯, 等. 优化驱动的起落架结构设计方法[J]. 航空学报, 2015, 36(3): 857-864.
Zhang Ming, Liu Wen-bin, Li Chuang, et al. Optimization-driven design method of landing gear structure[J]. Acta Aeronautica Et Astronautica Sinica, 2015, 36(3): 857-864.
12 李天箭, 丁晓红, 李郝林. 机床结构轻量化设计研究进展[J]. 机械工程学报, 2020, 56 (21): 186-198.
Li Tian-jian, Ding Xiao-hong, Li Hao-lin. Research progress on lightweight design of machine tool structure[J]. Journal of Mechanical Engineering, 2020, 56 (21): 186-198.
13 才胜, 罗颖辉, 李青林. 农业机械轻量化技术研究现状与发展趋势[J]. 机械工程学报, 2021, 57(17): 35-52.
Cai Sheng, Luo Ying-hui, Li Qing-lin. State of the art of lightweight technology in agricultural machinery and its development trend[J]. Journal of Mechanical Engineering, 2021, 57(17): 35-52.
14 吴伟斌, 廖劲威, 洪添胜, 等. 山地果园轮式运输机车架结构分析与优化[J]. 农业工程学报, 2016, 32(11): 39-47.
Wu Wei-bin, Liao Jing-wei, Hong Tian-sheng, et al. Analysis and optimization of frame structure for wheeled transporter in hill orchard[J]. Transactions of the CSAE, 2016, 32(11): 39-47.
15 谢斌, 温昌凯, 杨子涵, 等. 基于实测载荷的蔬菜田间动力机械车架结构优化[J]. 农业机械学报, 2018, 49(): 463-469.
Xie Bin, Wen Chang-kai, Yang Zi-han, et al. Structure optimization of frame for field vegetable power machinery based on measured load data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.): 463-469.
16 中华人民共和国交通部. 超限运输车辆行驶公路管理规定[J]. 中华人民共和国国务院公报, 2000(23): 33-36.
17 李平, 廖庆喜, 李磊, 等. 4SY-1.8改进型油菜割晒机主要装置设计与试验[J]. 农业机械学报, 2014, 45(1): 53-58.
Li Ping, Liao Qing-xi, Li Lei, et al. Design and experiment of the main device of 4SY-1.8 modified rape windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 53-58.
18 王伟, 吕晓兰, 王士林, 等. 茎叶类蔬菜机械化收获技术研究现状与发展[J]. 中国农业大学学报, 2021, 26(4): 117-127.
Wang Wei, Xiao-lan Lyu, Wang Shi-lin, et al. Current status and development of stem and leaf vegetable mechanized harvesting technology[J]. Journal of China Agricultural University, 2021, 26(4): 117-127.
19 李海同, 吴崇友, 沐森林, 等. 基于ANSYS-ADAMS的立式油菜割晒机铺放角形成机理[J]. 农业工程学报, 2020, 36(14): 96-105.
Li Hai-tong, Wu Chong-you, Mu Sen-lin, et al. Formation mechanism of laying angle of vertical rape windrower based on ANSYS-ADAMS[J]. Transactions of the CSAE, 2020, 36(14): 96-105.
20 廖宜涛, 廖庆喜, 周宇, 等. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(6): 73-82.
Liao Yi-tao, Liao Qing-xi, Zhou Yu, et al. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 73-82.
21 李仲恺, 谢方平, 刘科, 等. 油菜收获圆盘式切割器的设计与性能试验[J]. 湖南农业大学学报:自然科学版, 2014, 40(1): 83-88.
Li Zhong-kai, Xie Fang-ping, Liu Ke, et al. Design and performance evaluation of a disc cutter for rape harvest[J]. Journal of Hunan Agricultural University(Natural Sciences), 2014, 40(1): 83-88.
22 廖宜涛, 陈传节, 舒彩霞, 等. 4SY-1.8型手扶式油菜割晒机设计与试验[J]. 农业机械学报, 2014, 45(): 94-100.
Liao Yi-tao, Chen Chuan-jie, Shu Cai-xia, et al. Design and experiment of 4SY-1.8 rape walking windrower[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Sup.1): 94-100.
23 李平, 廖庆喜, 舒彩霞, 等. 油菜割晒机茎秆铺放质量的故障成因分析与参数匹配研究[J]. 应用基础与工程科学学报, 2016, 24(1): 197-209.
Li Ping, Liao Qing-xi, Shu Cai-xia, et al. Fault analysis of stem windrowing quality and parameters match on the rape windrower[J]. Journal of Basic Science and Engineering, 2016, 24(1): 197-209.
24 金文明, 李华军, 寇淑清, 等. 装配式凸轮轴悬臂式数控装配机的机架模态分析[J]. 吉林大学学报:工学版, 2009, 39(): 319-323.
Jin Wen-ming, Li Hua-jun, Kou Shu-qing, et al. Modal analysis of frame of cantilever NC assembling machine for assembled camshaft[J]. Journal of Jilin University (Engineering and Technology Edition) 2009, 39(Sup.2): 319-323.
25 汪泉, 陈进, 王君, 等. 气动载荷作用下复合材料风力机叶片结构优化设计[J]. 机械工程学报, 2014, 50(9): 114-121.
Wang Quan, Chen Jin, Wang Jun, et al. Structural optimization of composite wind turbine blade under aerodynamic loads[J]. Journal of Mechanical Engineering, 2014, 50(9): 114-121.
26 张娜娜, 赵匀, 刘宏新. 高速水稻插秧机车架的轻量化设计[J]. 农业工程学报, 2012, 28(3): 55-59.
Zhang Na-na, Zhao Yun, Liu Hong-xin. Light design of frame for self-propelled chassis rice transplanter[J]. Transactions of the CSAE, 2012, 28(3): 55-59.
27 邱白晶, 何耀杰, 盛云辉, 等. 喷雾机喷杆有限元模态分析与结构优化[J]. 农业机械学报, 2014, 45(8): 112-116.
Qiu Bai-jing, He Yao-jie, Sheng Yun-hui, et al. Finite element modal analysis and structure optimization of spray boom[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 112-116.
28 廖庆喜, 何坤, 万星宇, 等. 履带联合收获机式动力平台油菜直播机设计与试验[J]. 农业机械学报, 2021, 52(12): 54-64.
Liao Qing-xi, He Kun, Wan Xing-yu, et al. Devices for rapeseed direct seeder on tracked combined harvesting power platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 54-64.
29 王利鹤, 赵永来, 崔红梅, 等. 基于ANSYS Workbench的深松机机架静力学分析及轻量化设计[J]. 重庆理工大学学报:自然科学, 2019,33(2): 87-93.
Wang Li-he, Zhao Yong-lai, Cui Hong-mei, et al. Static analysis and lightweight design of subsoiler frame based on ANSYS Workbench[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(2): 87-93.
30 李耀明, 孙朋朋, 庞靖, 等. 联合收获机底盘机架有限元模态分析与试验[J]. 农业工程学报, 2013, 29(3): 38-46.
Li Yao-ming, Sun Peng-peng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J]. Transactions of the CSAE, 2013, 29(3): 38-46.
31 金诚谦, 尹文庆, 吴崇友. 4SY-2型油菜割晒机铺放质量数学模型与影响因素分析[J]. 农业工程学报, 2012, 28(2): 45-48.
Jin Cheng-qian, Yin Wen-qing, Wu Chong-you. Mathematical model and influencing factors analysis for windrow quality of 4SY-2 rape windrower[J]. Transactions of the CSAE, 2012, 28(2): 45-48.
32 金诚谦, 尹文庆, 吴崇友. 油菜割晒机拨指输送链式输送装置研制与试验[J]. 农业工程学报, 2013, 29(21): 11-18.
Jin Cheng-qian, Yin Wen-qing, Wu Chong-you. Development and experiment of rape windrower transportation device with poke finger conveyor chain[J]. Transactions of the CSAE, 2013, 29(21): 11-18.
[1] 杨欣,刘玉肖,王阳,陈春皓,吕林硕. 果园多风管喷雾机风送系统流场仿真和试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2723-2732.
[2] 顿国强,吴星澎,纪欣鑫,张福利,纪文义,朱礼贵. 玉米条带摆管式撒肥装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2697-2707.
[3] 王琛,雒特,惠倩倩,王忠昊,王方方. 面向分体式飞行汽车对接锁定的机电系统设计与验证[J]. 吉林大学学报(工学版), 2024, 54(8): 2130-2140.
[4] 舒彩霞,杨佳,廖庆喜,万星宇,袁佳诚. 油菜联合收获导流式双筒旋风分离清选装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1807-1820.
[5] 张国忠,丁凯权,李正博,陈龙,唐楠锐,刘婉茹,黄海东,周勇,王洪昌. 基于泥鳅体表的水稻直播机仿生滑板设计与试验[J]. 吉林大学学报(工学版), 2024, 54(5): 1482-1492.
[6] 张伏,娄立民,钱丹,王世强,冯春凌,赵一荣. 大方捆打捆机压缩机构优化设计及试验[J]. 吉林大学学报(工学版), 2024, 54(4): 1166-1174.
[7] 余建星,韦明秀,余杨,崔宇朋,潘宇. 加筋板结构可靠性拓扑优化与工程化设计[J]. 吉林大学学报(工学版), 2024, 54(10): 2781-2791.
[8] 周焕林,郭鑫,王选,方立雪,龙凯. 考虑几何非线性的多相多孔结构拓扑优化设计[J]. 吉林大学学报(工学版), 2024, 54(10): 2754-2763.
[9] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[10] 刘伟健,罗锡文,曾山,文智强,曾力. 履带式再生稻收获机田间转弯机理和性能试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2695-2705.
[11] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[12] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[13] 孙舒杨,程玮斌,张浩桢,邓向萍,齐红. 基于深度学习的两阶段实时显式拓扑优化方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2942-2951.
[14] 顿国强,刘文辉,毛宁,吴星澎,纪文义,马洪岩. 交替换岗式大豆小区育种排种器优化设计与试验[J]. 吉林大学学报(工学版), 2023, 53(1): 285-296.
[15] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .