吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2695-2705.doi: 10.13229/j.cnki.jdxbgxb.20211178

• 农业工程·仿生工程 • 上一篇    下一篇

履带式再生稻收获机田间转弯机理和性能试验

刘伟健(),罗锡文,曾山(),文智强,曾力   

  1. 华南农业大学 南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642
  • 收稿日期:2021-11-09 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 曾山 E-mail:531964726@qq.com;shanzeng@scau.edu.cn
  • 作者简介:刘伟健(1992-),男,助理研究员,博士.研究方向:农业机械化工程.E-mail:531964726@qq.com
  • 基金资助:
    岭南现代农业实验室科研项目(NT2021009);工信部2021重点项目(TC210H02Y)

Field turning mechanism and performance test of crawler reclaimed rice harvester

Wei-jian LIU(),Xi-wen LUO,Shan ZENG(),Zhi-qiang WEN,Li ZENG   

  1. Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University,Guangzhou 510642,China
  • Received:2021-11-09 Online:2023-09-01 Published:2023-10-09
  • Contact: Shan ZENG E-mail:531964726@qq.com;shanzeng@scau.edu.cn

摘要:

为进一步探究履带式再生稻收获机的田间转弯性能,对转弯半径与窄履沉陷量的关系进行了全面分析。主要分析了再生稻收获机田间转弯的基本原理,对窄履驱动力、滑移率、窄履沉陷量以及行驶阻力进行了计算,使用Recurdyn分析获得转弯半径与窄履沉陷量的函数关系。仿真结果表明:随着转弯半径的增大,两侧驱动轮转矩、窄履沉陷量均减小,驱动轮转矩从5835 N·m减小到672.3 N·m,驱动轮转矩、窄履沉陷量峰值均处于转弯半径为0处。通过田间试验对仿真结果的可靠性进行验证,结果表明:随着转弯半径的增大,沉陷量从186.24 mm减小到103.57 mm,试验现象和计算结果均与Recurdyn仿真吻合,证明仿真结果可靠,该研究可为后期再生稻收获机转弯理论研究提供参考。

关键词: 农业机械化工程, 再生稻, 窄履, 转弯半径, 沉陷量, 虚拟样机

Abstract:

In order to further explore the turning performance of ratooning rice harvester in the field, the relationship between turning radius and narrow track subsidence was comprehensively analyzed. The basic principle of field turning of tracked ratooning rice harvester was analyzed, and the driving force, slip rate, track subsidence and driving resistance of narrow track were calculated. The functional relationship between turning radius and narrow track subsidence was obtained by RecurDyn analysis. The simulation results show that with the increase of the turning radius, the driving wheel torque and narrow track subsidence on both sides decrease. The driving wheel torque deceased from 5835 N·m to 672.3 N·m. The peak values of driving wheel torque and narrow track subsidence were at the turning radius of 0. The reliability of the simulation results was verified by field experiments, the results show that with the increased of turning radius, the subsidence decreased from 186.24 mm to 103.57 mm. The experimental phenomena and calculation results were consistent with the RecurDyn simulation, proving the simulation results are reliable. This study can provide a reference for the turning theory research of ratooning rice harvester in the later period.

Key words: agricultural mechanization engineering, ratooning rice, narrow track, turning radius, subsidence, virtual prototype

中图分类号: 

  • S225.4

表1

再生稻收获机参数"

参数数值参数数值
整机尺寸(长×宽×高)/(mm×mm×mm)4870×2500×2960接地长度/mm1873
履带宽度/mm280驱动轮半径/mm194.5
割台宽度/mm2000轨距/mm1600
履齿节距/mm90

作业速度/

(m·s-1

0~2.5
履刺高度/mm29整机质量/kg2950
重心高度/mm875液压系统结构双泵双马达

图1

再生稻收获机转弯基本原理"

图2

履带滑转对转弯半径的影响"

图3

再生稻收获机稳态转弯模型"

图4

主动轮转矩-转弯半径变化曲线"

图5

再生稻收获机虚拟样机模型"

图6

左、右两侧履带行走轨迹图"

图7

直行/转弯各参数之间的关系"

图8

转弯半径-驱动轮转矩"

图9

转弯半径/窄履沉陷量仿真分析"

图10

平板沉降试验"

图11

压力-沉陷对数拟合图"

图12

田间试验"

表2

试验结果"

序号转弯半径R/mm

内侧驱动轮转速

n1/(r·min-1

外侧驱动轮转速n2/(r·min-1速度或角速度/ (m·s-1)或(rad·s-1外侧驱动轮转矩M1/(N·m)内侧驱动轮转矩M2/(N·m)窄履沉陷量Z1/mm仿真结果Z/mm
1090.3193.120.595678.735736.84186.24211.87
2800098.200.382843.302143.54174.65186.11
32 84017.4396.650.282760.432030.30160.82174.87
43 13024.6497.750.262480.461790.39159.32170.28
54 12032.1694.230.182365.321643.54156.40168.97
67 44047.1896.560.142065.451264.54150.31164.77
711 35063.1893.670.101570.561020.35145.54156.12
821 72077.4294.670.071254.80978.53130.47141.87
930 15084.9396.380.041045.65884.65116.47124.32
10101.8199.171.37738.73753.32103.57111.39
1 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
Wang Fei, Peng Shao-bing. Research progress in rice green and high-yield management practices[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136.
2 徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717.
Xu Fu-xian, Xiong Hong, Zhang Lin, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717.
3 曾山, 黄登攀, 杨文武,等. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报: 工学版, 2022, 52(8): 1943-1950.
Zeng Shan, Huang Deng-pan, Yang Wen-wu, et al. Design and test of the chassis of triangular crawler reclaiming rice harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1943-1950.
4 刘伟健, 罗锡文, 曾山, 等. 基于模糊PID控制的再生稻自适应仿形割台性能试验与分析[J]. 农业工程学报, 2022, 38(10): 1-9.
Liu Wei-jian, Luo Xi-wen, Zeng Shan, et al. Performance test and analysis of the self-adaptive profiling header for ratooning rice based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 1-9.
5 张国忠, 张翼翔, 黄见良, 等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
Zhang Guo-zhong, Zhang Yi-xiang, Huang Jian-liang, et al. Design and performance testing a novel head spike harvester of ratoon rice[J]. Journal of Huazhong Agriculturall University, 2016, 35(1): 131-136.
6 付建伟, 张国忠, 谢干, 等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报,2020, 36(3): 11-20.
Fu Jian-wei, Zhang Guo-zhong, Xie Gan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 11-20.
7 雷志强, 张国忠, 彭少兵, 等. 全履带式再生稻收割机行走底盘碾压率的模拟与分析[J]. 安徽农业大学学报, 2017, 44(4): 738-743.
Lei Zhi-qiang, Zhang Guo-zhong, Peng Shao-bing, et al. Simulation and analysis of the stubble pushing rate by chassis of the completely tracked harvester for the ratoon rice[J]. Journal of Anhui Agricultural University, 2017, 44(4): 738-743.
8 Wong J Y. Theory of Ground Vehicles[M]. New york: John Wiley & Sons, 1993.
9 Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(3): 343-355.
10 Wong J Y, Huang W. "Wheels vs. tracks"-a fundamental evaluation from the traction perspective[J]. Journal of Terramechanics, 2006, 52(43): 27-43.
11 Rahman A, Yahya A, Zohadie M. Design parameters optimization simulation of a prototype segmented rubber track vehicle for Sepang peat in Malaysia[J]. American Journal of Applied Sciences, 2005, 2(3): 655-671.
12 杨聪彬, 董明明, 顾亮, 等. 考虑履刺形状的履带板土壤推力研究[J]. 北京理工大学学报, 2015, 35(11): 22-25.
Yang Cong-bin, Dong Ming-ming, Gu Liang, et al. Research on soil shear strength considering the shape of grouse[J]. Trancsactions of Beijing Institute of Technology, 2015, 35(11): 22-25.
13 宋振家. 坚实地面上均布载荷时的履带车辆转弯理论[J]. 装甲兵技术学院教学与科研, 1980, 10(3): 1-10.
Song Zhen-jia. Steering theory of tracked vehicle with uniformpressure distribution on hard land[J]. Armored Force Technologi-cal Institute Education and Scientific Reaserch, 1980, 10(3): 1-10.
14 程军伟, 高连华, 王红岩, 等. 履带车辆转弯分析[J]. 兵工学报, 2007, 10(9): 1110-1115.
Cheng Jun-wei, Gao Lian-hua, Wang Hong-yan. Analysis on the steering of tracked vehicles[J]. Acta Armamentarii, 2007, 10(9): 1110-1115.
15 Laura E Ray. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics and Automation, 2009, 25(3): 717-726.
16 Pentzer J, Brennan S N, Reichard K M. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3): 455-476.
17 Martínez J L, Mandow A, Morales J, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10): 867-878.
18 Lyasko Modest. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1): 21-31.
19 李西秦, 刘冰, 齐劲峰. 车轮动力半径与滑转率的研究[J]. 拖拉机与农用运输车, 2002, 28(2): 17-20.
Li Xi-qin, Liu Bing, Qi Jin-feng. Research on wheel radius and slippage[J]. Tractors & Agricultural Vehicles, 2002, 28(2): 17-20.
20 杨财, 宋健, 周艳霞. 车辆转弯时牵引力控制系统前轮滑转率算法[J]. 农业机械学报, 2008,39(8): 38-40.
Yang Cai, Song Jian, Zhou Yan-xia. Algorithm for front wheel slip ratio in the traction control system when turning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2008, 39(8): 38-40.
21 Bekker M G. Introduction to Terrain-vehicle Systems[M]. Michigan: The University of Michigan Press, 1969.
22 Karafiath L L, Nowatzki E A. Soil Mechanics for Off-road Vehicle Engineering[M]. Clausthal: Transportation Technology Publications, 1978.
23 杜小强, 宁晨, 杨振华, 等. 跨式油茶果收获机履带底盘行走液压系统设计与试验[J]. 农业机械学报, 2023, 54(3): 139-147.
Du Xiao-qiang, Ning Chen, Yang Zhen-hua, et al. Design and experiment of hydraulic system for crawler chassis of straddle type camellia oleifera fruit harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 139-147.
24 宋朋, 吕金庆. 基于EDEM-RecurDyn的自激式振动深松铲耦合仿真研究[J]. 东北农业大学学报,2023,54(2):87-94.
Song Peng, Lv Jin-qing. Effects of coupling simulation of self-excited vibratory subsoiler based on EDEM-RecurDyn[J]. Journal of Northeast Agricultural University, 2023, 54(2): 87-94.
25 刘汉光,王国强,孟东阁,等. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报:工学版,2018,48(2):486-491.
Liu Han-guang, Wang Guo-qiang, Meng Dong-ge, et al. Reasonable pre-tension reaserch of crawler traveling gear of hydraulic excavator[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 486-491.
[1] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[2] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[3] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[4] 顿国强,刘文辉,毛宁,吴星澎,纪文义,马洪岩. 交替换岗式大豆小区育种排种器优化设计与试验[J]. 吉林大学学报(工学版), 2023, 53(1): 285-296.
[5] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[6] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[7] 刘洋. 动臂塔机卸载冲击仿真及试验[J]. 吉林大学学报(工学版), 2022, 52(6): 1292-1300.
[8] 刘佳杰,马兰,向伟,颜波,文庆华,吕江南. 4QM-4.0型麻类青饲料联合收获机研制[J]. 吉林大学学报(工学版), 2022, 52(12): 3039-3048.
[9] 曾百功,黎奎良,叶进,任丽丽,Rashidov Jaloliddin,张明. 工厂化上海青流水线收割装置的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2756-2764.
[10] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[11] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
[12] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[13] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[14] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[15] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[2] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[3] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[4] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[5] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[6] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[7] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] 于华楠,康健 . 改进的基于Kalman滤波的盲多用户检测算法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .