吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1749-1755.doi: 10.13229/j.cnki.jdxbgxb.20240464

• 计算机科学与技术 • 上一篇    下一篇

基于改进RBF神经网络的人体姿态局部特征识别算法

李燕飞(),吴加宁   

  1. 湖南农业大学 机电工程学院,长沙 410125
  • 收稿日期:2024-04-29 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:李燕飞(1981-),女,副教授,博士.研究方向:农业人工智能,自动化装备仿真.E-mail:yanfeili@hunau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFC2008605)

Human pose local feature recognition algorithm based on improved RBF neural network

Yan-fei LI(),Jia-ning WU   

  1. College of Mechanical and Electrical Engineering,Hunan Agricultural University,Changsha 410125,China
  • Received:2024-04-29 Online:2025-05-01 Published:2025-07-18

摘要:

以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人体姿态数据的非线性映射和优化,准确识别不同个体姿态,采用newrbe函数构建RBF神经网络,提取人体姿态数据特征矢量,以为识别提供重要依据;为增强RBF神经网络在处理不同个体姿态差异方面的能力,确保识别的准确性和自适应性,使用粒子群优化算法改进神经网络,并通过特定概率对粒子实施遗传操作,实现网络优化得到人体姿态局部特征识别结果。实验结果表明:本文算法相对误差均较小,可维持在0.8以下,识别精度高,且在迭代次数达到20时损失函数已降至最低,收敛速度较快,可为农业机械化领域的人机交互提供扎实基础。

关键词: 改进RBF神经网络, 人体姿态, 局部特征识别, 三维坐标, 粒子群优化

Abstract:

Therefore, with the human pose recognition problem of robots as the core, a local feature recognition algorithm for human pose based on an improved RBF neural network is proposed to improve recognition accuracy. Using a depth camera to obtain three-dimensional orientation data of human joint points, normalizing the orientation data, and constructing three-dimensional coordinates of joint points; Considering the differences between different individuals, in order to achieve nonlinear mapping and optimization of human pose data, accurately identify different individual poses, a Newrbe function is used to construct an RBF neural network, extract feature vectors of human pose data, and provide important basis for recognition; To enhance the ability of RBF neural networks to handle different individual pose differences, ensure recognition accuracy and adaptability, particle swarm optimization algorithm is used to improve the neural network, and genetic operations are performed on particles with specific probabilities to achieve network optimization and obtain local feature recognition results of human pose. The experimental results show that the proposed algorithms have relatively low relative errors, can be maintained below 0.8, high recognition accuracy, and the loss function is minimized when the number of iterations reaches 20. The convergence speed is fast, which can provide a solid foundation for human-machine interaction in the field of agricultural mechanization.

Key words: improve rbf neural network, human posture, local feature recognition, three dimensional coordinates, particle swarm optimization

中图分类号: 

  • TP391

图1

人体关节点示意图"

图2

实验环境示意图"

图3

11种人体姿势示意图"

图4

特征提取结果"

图5

不同算法姿态局部特征识别收敛速度对比"

图6

不同算法姿态局部特征识别相对误差均值对比"

图7

不同算法姿态局部特征识别ROC曲线对比"

[1] 陈怀林, 李文欣, 杜歆桐, 等.基于情境感知的智慧农机管控系统交互设计研究[J].包装工程, 2023, 44(22): 123-130.
Chen Huai-lin, Li Wen-xin, Du Xin-tong, et al. Interaction design of intelligent agricultural machinery managementand control system based on context-awareness[J]. Packaging Engineering, 2023, 44(22):123-130.
[2] 段铭钰, 袁瑞甫, 杨艺. 基于改进RBF神经网络的采煤机截割煤岩性状智能识别[J]. 河南理工大学学报:自然科学版, 2022,41(1): 43-51.
Duan Ming-yu, Yuan Rui-fu, Yang Yi. Intelligent recognition of coal and rock properties in shearer cutting process based on improved RBF neural network[J].Journal of Henan Polytechnic University (Natural Science), 2022, 41(1): 43-51.
[3] 曾明如, 熊嘉豪, 祝琴. 基于T-Fusion的TFP3D人体行为识别算法[J].计算机集成制造系统, 2023, 29(12): 4032-4039.
Zeng Ming-ru, Xiong Jia-hao, Zhu Qin. TFP3D human behavior recognition algorithm based on T-Fusion[J].Computer Integrated Manufacturing Systems,2023, 29(12): 4032-4039.
[4] 余金锁, 卢先领. 基于分割注意力的特征融合CNN-Bi-LSTM人体行为识别算法[J].电子测量与仪器学报, 2022, 36(2): 89-95.
Yu Jin-suo, Lu Xian-ling. Human action recognition algorithm of feature fusion CNN-Bi-LSTM based on split-attention[J].Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 89-95.
[5] 孙剑明, 韩生权, 沈子成, 等. 基于双卷积链的双目人体姿态距离定位识别[J]. 兵工学报, 2022,43(11): 2846-2854.
Sun Jian-ming, Han Sheng-quan, Shen Zi-cheng, et al. Binocular human pose and distance identification based on double convolutional chain[J].Acta Armamentarii, 2022, 43(11): 2846-2854.
[6] Nguyen T T, Pham D T, Vu H, et al. A robust and efficient method for skeleton-based human action recognition and its application for cross-dataset evaluation[J].IET Computer Vision,2022,16(8):709-726.
[7] Huang Y Z, Zhao H M, Zhao X T, et al.Pattern recognition using self-reference feature extraction for?-OTDR[J].Applied Optics,2022,61(35):10507-10518.
[8] Zeng Y M, Xiang H J, Zheng N, et al. Flexible triboelectric nanogenerator for human motion tracking and gesture recognition[J]. Nano Energy,2022, 91: 106601.
[9] 李新春, 张玉琛, 阳士宇. 融合全局与局部特征的UWB雷达人体动作识别算法[J].重庆邮电大学学报: 自然科学版, 2023, 35(4): 636-645.
Li Xin-chun, Zhang Yu-chen, Yang Shi-yu. Human action recognition algorithm incorporating global andlocal features by UWB radar[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2023,35(4):636-645.
[10] Wang C, Zhang F, Zhu X T, et al.Low-resolution human pose estimation[J].Pattern Recognition: The Journal of the Pattern Recognition Society, 2022,126: 108579.
[11] 宋玉琴, 曾贺东, 高师杰, 等.基于改进高分辨表征的人体姿态估计算法[J]. 计算机工程与设计, 2022, 43(4): 1045-1051.
Song Yu-qin, Zeng He-dong, Gao Shi-jie, et al. Human pose estimation algorithm based on improved high resolution representation[J].Computer Engineering and Design,2022,43(4): 1045-1051.
[12] Li J C, Han R, Feng W, et al. Contactless interaction recognition and interactor detection in multi-person scenes[J]. Frontiers of Computer Science, 2024, 18(5): 185325.
[13] 邓平, 吴明辉. 基于机器学习的人体运动姿态识别方法[J]. 中国惯性技术学报, 2022,30(1): 37-43.
Deng Ping, Wu Ming-hui.Human motion attitude recognition method based on machine learning[J]. Journal of Chinese Inertial Technology, 2022, 30(1): 37-43.
[14] Zhang Y Q, Ding K, Hui J Z, et al.Human-object integrated assembly intention recognition for context-aware human-robot collaborative assembly[J]. Advanced Engineering Informatics, 2022,54: 101792.
[15] Meng C, He X, Luan T L.Gait recognition based on 3D human body reconstruction and multi-granular feature fusion[J].Journal of Supercomputing, 2023, 79(11): 12106-12125.
[16] 刘锁兰, 周岳靖, 王洪元, 等.基于全局图遍历的ST-GCN人体行为识别算法[J]. 扬州大学学报: 自然科学版, 2022, 25(2): 62-68.
Liu Suo-lan, Zhou Yue-jing, Wang Hong-yuan, et al. ST-GCN human action recognition algorithm based on global graph traversal[J]. Journal of Yangzhou University (Natural Science Edition), 2022,25(2):62-68.
[17] 陈琳, 王子微, 莫玉良, 等. 改进的自适应复制、交叉和突变遗传算法[J]. 计算机仿真, 2022,39(8): 323-326.
Chen Lin, Wang Zi-wei, Mo Yu-liang, et al. Im⁃proved genetic algorithms for adaptive replication crossover and mutation[J]. Computer Simulation, 2022, 39 (8): 323-326.
[18] Fang N, Wei J, Feng T, et al. Feature super-resolution based facial expression recognition for multi-scale low-resolution images[J]. Knowledge-based systems, 2022, 236(25): 1076781.
[19] 王亚东, 秦会斌. 结合不确定性估计的轻量级人体关键点检测算法[J]. 电子技术应用, 2023, 49(10): 40-45.
Wang Ya-dong, Qin Hui-bin.Lightweight human key point detection algorithm with uncertainty[J].Application of Electronic Technique,2023,49(10):40-45.
[20] Abul A B, Ram K K, Rahul J. A convolutional neural network and classical moments-based feature fusion model for gesture recognition[J]. Multimedia Systems, 2022, 28(5): 1779-1792.
[1] 金庆良,周鑫森,陈翼,吴承文. 基于群智能增强核极限学习机的创新人才预测模型[J]. 吉林大学学报(工学版), 2025, 55(5): 1763-1771.
[2] 郭祎,魏书威,姜涛. 基于区位势能和多源数据的城市客运交通规划算法[J]. 吉林大学学报(工学版), 2025, 55(4): 1328-1335.
[3] 才华,朱瑞昆,付强,王伟刚,马智勇,孙俊喜. 基于隐式关键点互联的人体姿态估计矫正器算法[J]. 吉林大学学报(工学版), 2025, 55(3): 1061-1071.
[4] 张良力,马晓凤. 基于改进粒子群算法的新能源汽车充电站选址方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2275-2281.
[5] 王宇,赵凯. 基于亚像素定位的人体姿态热图后处理[J]. 吉林大学学报(工学版), 2024, 54(5): 1385-1392.
[6] 巩亚东,丁明祥,李响,田近民. TC4钛合金材料铣削加工分析及参数优化[J]. 吉林大学学报(工学版), 2024, 54(4): 917-925.
[7] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[8] 张铮,朱齐丹,吕晓龙,樊星. 冗余机械臂运动学逆解的求解优化方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3379-3387.
[9] 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202.
[10] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[11] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[12] 朱思峰,赵明阳,柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报(工学版), 2022, 52(11): 2698-2705.
[13] 于向军,槐元辉,李学飞,王德武,俞安. 基于克里金和粒子群算法的装载机铲掘轨迹规划[J]. 吉林大学学报(工学版), 2020, 50(2): 437-444.
[14] 金顺福,郄修尘,武海星,霍占强. 基于新型休眠模式的云虚拟机分簇调度策略及性能优化[J]. 吉林大学学报(工学版), 2020, 50(1): 237-246.
[15] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐安,乔向明. 基于更新理论的复杂设备故障率表达[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[2] 卢守峰,杨兆升,刘喜敏 . 基于多智能体的交通信号控制与路径诱导的协同[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 143 -146 .
[3] 宫长明,邓宝清,张永平,刘志敏,苏 岩. 电控LPG发动机首循环冷起动特性[J]. 吉林大学学报(工学版), 2005, 35(03): 272 -276 .
[4] 李彦江, 段广仁 . 离散T-S模糊系统的鲁棒无源控制
[J]. 吉林大学学报(工学版), 2008, 38(05): 1208 -1214 .
[5] 于滨, 杨忠振, 程春田, 左志 . 公交线路发车频率优化的双层规划模型及其解法[J]. 吉林大学学报(工学版), 2006, 36(05): 664 -0668 .
[6] 葛宏伟, 梁艳春. 进化Elman神经网络模型与非线性系统辨识[J]. 吉林大学学报(工学版), 2005, 35(05): 511 -0519 .
[7] 廖庆斌,李舜酩,覃小攀 . 车辆振动信号的特征提取方法比较[J]. 吉林大学学报(工学版), 2007, 37(04): 910 -915 .
[8] 陈耕野,叶增平,王元,谷传宏 . 注水电测混凝土的相对渗透系数[J]. 吉林大学学报(工学版), 2006, 36(06): 1019 -1024 .
[9] 周逢道,林君,朱凯光,周国华,刘长胜 . 瞬变电磁探测发射电流波形记录单元设计[J]. 吉林大学学报(工学版), 2009, 39(02): 541 -0545 .
[10] 赵宏伟,冯嘉,臧雪柏,宋波涛. 一种实用的运动目标检测和跟踪算法[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 386 -0390 .