吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1557-1563.doi: 10.13229/j.cnki.jdxbgxb201406004

• • 上一篇    下一篇

基于改进平均流量模型的离合器接合特性仿真

马彪1, 李国强1, 李和言1, 朱礼安2   

  1. 1.北京理工大学 机械与车辆学院,北京 100081;
    2.江麓机电集团有限公司,湖南 湘潭 411100
  • 收稿日期:2013-03-26 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:马彪(1964-),男,教授,博士.研究方向:车辆传动理论与技术.E-mail:
  • 基金资助:
    国家自然科学基金项目(51175024)

Simulation of wet clutch engagement characteristics based on advanced average flow model

MA Biao1, LI Guo-qiang1, LI He-yan1, ZHU Li-an2   

  1. 1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2.Jianglu Machinery and Electronics Group Co.,Ltd., Xiangtan 411100, China
  • Received:2013-03-26 Online:2014-11-01 Published:2014-11-01

摘要: 针对液力机械变速器湿式多片离合器的结构特点,研究了离合器摩擦副表面粗糙接触、摩擦材料的可渗透性和润滑油液的离心力,改进了平均流量模型,建立了修正的雷诺方程用于计算接合过程中油膜压力和油膜厚度的变化规律。采用Greenwood-Tripp接触模型,建立了单摩擦副承载力方程和转矩方程。通过研究摩擦片和对偶钢片相对滑动产生的摩擦热以及润滑油对摩擦副的冷却作用,获得了被动摩擦片的角速度、油膜厚度以及摩擦转矩等离合器接合过程工作特性的变化规律。最后,仿真分析了摩擦副的工作参数和材料特性对接合转矩的影响规律。

关键词: 车辆工程, 湿式离合器, 平均流量模型, 液力机械传动, 接合过程

Abstract: According to the structural characteristics of wet clutches in hydraulic-mechanical transmission, the surface roughness, permeability of the friction material, and the centrifugal force of the lubricant oil film were investigated. Then a modified Reynolds equation based on the advanced average flow model was developed to calculate the relationship between oil film pressure and oil film thickness. The Green-Tripp method was used to develop the force and torque balance equations of single friction pair. The friction heat between friction plate and steel plate, and the cooling effect of oil film on the friction pair were analyzed. Thus, the change characteristics of the torque response, the film thickness and angular velocity during the engagement were acquired. Also the effects of the working parameters and material properties on the torque response during engagement were considered.

Key words: vehicle engineering, wet clutch, average flow model, hydraulic-mechanical transmission, engagement process

中图分类号: 

  • U463.22
[1] Berger E J, Sadeghi F, Krousgrill C M. Finite element modeling of engagement of rough and grooved wet clutches[J]. Journal of Tribology, 1996, 118(1):137-146.
[2] Davis C L, Sadeghi F, Krousgrill C M. A simplified approach to modeling thermal effects in wet clutch engagement: analytical and experimental comparison[J]. Journal of Tribology, 2000,122(1):110-118.
[3] Mansouri M,Holgerson M, Khonsari M M, et al. Thermal and dynamic characterization of wet clutch engagement with provision for drive torque[J]. Journal of Tribology, 2001, 123(2):313-323.
[4] Marklund P, Mäki R, Larsson R, et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J]. Tribology International, 2007, 40(5):876-884.
[5] 张志刚,周晓军,沈路,等.湿式离合器动态结合特性的仿真与试验[J].中国公路学报,2010,23(3):115-120. Zhang Zhi-gang,Zhou Xiao-jun,Shen Lu,et al. Simulation and experiment on dynamic engagement characteristics of wet clutch[J]. China Journal of Highway and Transport, 2010, 23(3):115-120.
[6] Jang J Y,Khonsari M M, Maki R.Three-dimensional thermohydrodynamic analysis of a wet clutch with consideration of grooved friction surfaces[J].Journal of Tribology,2011,133(1):0117031-0117042.
[7] 迟长青.流体力学润滑[M]. 北京:国防工业出版社,1998.
[8] Patir N, Cheng H S. An average flow model for determining effects of three-dimensional toughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1979, 100:12-17.
[9] Berger E J, Sadeghi F, Krousgrill C M. Analytical and numerical modeling of engagement of rough, permeable, grooved wet clutches[J]. Journal of Tribology, 1997, 119(1):143-148.
[10] 郑林庆. 摩擦学原理[M]. 北京:高等教育出版社,1994.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!