吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 8-14.doi: 10.13229/j.cnki.jdxbgxb201601002

• • 上一篇    下一篇

基于双dSPACE的汽车动力学集成控制快速原型试验

朱冰1, 2, 贾晓峰1, 王御1, 吴坚1, 赵健1, 邓伟文1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2014-12-01 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 赵健(1978-),男,副教授,博士.研究方向:汽车地面系统分析与控制.E-mail:zhaojian@jlu.edu.cn
  • 作者简介:朱冰(1982-),男,副教授,博士.研究方向:汽车地面系统分析与控制,工程仿生学.E-mail:zhubing@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51105169, 51175215, 51205156); 吉林省科技发展计划项目(20140204010GX)

Rapid prototype test for integrated vehicle dynamic control using two dSPACE simulators

ZHU Bing1, 2, JIA Xiao-feng1, WANG Yu1, WU Jian1, ZHAO Jian1, DENG Wei-wen1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2014-12-01 Online:2016-01-30 Published:2016-01-30

摘要: 针对全线控电动汽车,提出了一种以前馈控制为主、反馈控制为辅的汽车动力学多目标集成控制策略,建立了集成控制架构,并分别设计了控制系统感知层、命令层、控制分配层和执行层;采用DS1103单板系统和DS1006中型仿真器两套dSPACE实时仿真系统建立了快速控制原型试验平台;并进行了典型工况测试试验。结果表明:本文控制策略能够有效提升车辆性能;同时,建立的快速控制原型测试方法操作简便、控制灵活,能够有效缩短控制系统开发周期、提高开发效率。

关键词: 车辆工程, 汽车动力学集成控制, 快速控制原型试验, 多目标优化, 控制分配

Abstract: A multi-objective integrated vehicle dynamics control algorithm is proposed for electric vehicle with x-by-wire actuators. This algorithm mainly uses feedforward control takes the feedbackward control as the supplement. The integrated control structure is established and the intention interpret layer, control command layer, control allocation layer and actuator layer are designed separately. A new type of rapid prototype test bench is built up using two both DS1103 single-board and DS1006-based mid-size dSPACE real time simulators. Tests are conducted on the test bench under typical working conditions. Results show that the proposed control method can enhance the control performance of the vehicle. The developed rapid control prototype testing method is easy and flexible, which can effectively shorten the development cycle and improve the development efficiency for vehicle control system design.

Key words: vehicle engineering, integrated vehicle dynamics control, rapid control prototype test, multi-objective optimization, control allocation

中图分类号: 

  • 463.1
[1] Yu Fan, Li Dao-fei, Crolla D A. Integrated vehicle dynamics control state-of-the art review [C]∥Proc of IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, 2008:1-6.
[2] 朱冰,任露泉,赵健,等. 基于逆乃奎斯特阵列法的车辆底盘主动转向与主动制动集成控制[J]. 吉林大学学报:工学版, 2011,41(增刊2): 41-46.
Zhu Bing, Ren Lu-quan, Zhao Jian, et al. Integrated vehicle chassis control of active steering and active braking using the inverse nyquist array method[J]. Journal of Jilin University (Engineering and Technology Edition), 2011,41 (Sup.2): 41-46.
[3] Gordon T, Howell M, Brandao F. Integrated control methodologies for road vehicles[J]. Vehicle System Dynamics, 2003, 40 (1):157-190.
[4] Cho W, Choi J, Kim C, et al. Unified chassis control for the improvement of agility, maneuverability, and lateral stability[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 1008-1020.
[5] Rajamani R, Piyabongkarn D. New paradigms for the integration of yaw stability and rollover prevention functions in vehicle stability control[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 249-261.
[6] Li Dao-fei, Du Shang-qian, Yu Fan. Integrated vehicle chassis control based on direct yaw moment, active steering and active stabilizer[J].Vehicle System Dynamics, 2008, 46(Sup.1): 341-351.
[7] Xiao Han-song, Chen Wu-wei. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment[J]. Vehicle System Dynamics, 2011, 49(1-2): 381-397.
[8] Maxwell T, Patil K, Bayne S, et al. Hardware-in-the-loop testing of GM two-mode hybrid electric vehicle[C]∥IEEE 12th Workshop on Control and Modeling for Power Electronics(COMPEL),Boulder,CO,2010: 1-5.
[9] 吴坚,赵健,徐斌,等. 基于dSPACE的汽车驱动力控制系统硬件在环研究[J]. 汽车技术, 2009 (9): 14-18.
Wu Jian, Zhao Jian, Xu Bin, et al. Research on hardware-in-the-loop of automotive driving force control system based on dSPACE[J]. Automotive Technology, 2009(9):14-18.
[10] 赵治国,刁威振,王琪,等. 干式DCT控制系统硬件在环仿真试验台开发[J]. 汽车工程, 2013,34(11): 1024-1032.
Zhao Zhi-guo, Diao Wei-zhen, Wang Qi,et al. Development of hardware-in-the-loop test bench for the control system of dry DCT[J]. Automotive Engineering, 2013,34(11):1024-1032.
[11] Wang Yu, Deng Wei-wen, Wu Jian, et al. Allocation-based fault tolerant control for electric vehicles with X-by-wire[C]∥SAE Paper, 2014-01-0866.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!