吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1940-1945.doi: 10.13229/j.cnki.jdxbgxb201606024

• • 上一篇    下一篇

风力机专用翼型气动结构一体化设计

陈进1, 李松林1, 2, 孙振业1, 陈刚1   

  1. 1.重庆大学 机械传动国家重点实验室,重庆 400044;
    2.东方电气风电有限公司 技术部,四川 德阳 618000
  • 收稿日期:2015-05-21 出版日期:2016-11-20 发布日期:2016-11-20
  • 作者简介:陈进(1956-),男,教授,博士生导师.研究方向:可再生能源装备设计理论与方法.
  • 基金资助:
    “863”国家高技术研究发展计划项目(2012AA051301); 国家自然科学基金项目(51175526)

Integrated design of aerodynamic and structural performance for wind turbine dedicated airfoil

CHEN Jin1, LI Song-lin1, 2, SUN Zhen-ye1, CHEN Gang1   

  1. 1.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;
    2.Ministry of Technology of Dongfang Electric Wind Power Co., Ltd.,Deyang 618000, China
  • Received:2015-05-21 Online:2016-11-20 Published:2016-11-20

摘要: 基于保角变换理论,提出了风力机专用翼型气动结构一体化设计方法。该方法结合西奥道生理论和B样条曲线对风力机翼型进行参数化表达;以翼型气动和结构性能最优为目标,建立了翼型优化数学模型;运用RFOIL软件求解气动特性、利用Matlab求解翼型结构特性,结合改进的遗传算法对翼型进行优化设计。优化得到相对厚度为21%的新翼型CQUL210,并将该翼型与国际知名的风力机翼型DU93-W-210进行了对比分析,结果表明:在设计攻角范围内,新翼型在自由转捩和固定转捩条件下气动性能都更加优越。有限元分析结果表明,新设计的CQUL210翼型的结构性能优于DU93-W-210翼型。本文方法对提高叶片捕风能力和减轻叶片质量具有重大意义。

关键词: 机械设计, 风力机翼型, 一体化设计, 遗传算法, 气动性能, 结构性能

Abstract: An integrated design method of aerodynamic and structural performance for wind turbine airfoil is proposed based on conformal transformation theory. In this method, the parameterized expression of an airfoil is presented by combing Theodorsen theory and B-spine curve. In order to optimize the aerodynamic and structural performance, an optimization mathematical model of the airfoil is established. The RFOIL software is used to solve the aerodynamic performance and a MATLAB code is used to solve the structural performance. The airfoil optimization is accomplished using an improved genetic algorithm. A new airfoil named CQUL210 with 21% maximum relative thickness is designed. Compared with the worldwide well known wind turbine airfoil DU93-W-210, of which the maximum relative thickness is also 21%, CQUL210 has higher aerodynamic performance both in smooth and rough transitions in the range of the design attack angle. Finite element analysis indicates that CQUL210 has higher structural performance than DU93-W-210. The method of this study can be applied to increase the wind capturing power and reduce the mass of the turbine blade.

Key words: mechanical design, wind turbine airfoil, integrated design, genetic algorithm, aerodynamic performance, structural performance

中图分类号: 

  • TK83
[1] Bjork A. Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-w3-xxx series of airfoils for horizontal axis wind turbines[R]. Stockholm,Sweden:FFATN, 1990.
[2] Fuglsang P, Bak C. Development of the Risϕ wind turbine airfoils[J]. Wind Energy,2004,7(2):145-162.
[3] Tangle J L, Somers D M. NREL airfoil families for HAWT’s[DB/OL].[2015-05-15]. https://www.researchgate.net/publication/237213681_NREL_airfoil_families_for_HAWT%27s.
[4] Timmer W A, van Rooij R P J O M. Summary of the delft university wind turbine dedicated airfoils[C]∥AIAA Paper,20030.
[5] Sepehr S, Arash H. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines[J]. Journal of Renewable and Sustainable Energy, 2014,6(5):053105.
[6] Bak C, Gaudern N, Zahle F, et al. Airfoil design: finding the balance between design lift and structural stiffness[C]∥Journal of Physics: Conference Series,Copenhagen, Denmark, 2014,524:012017.
[7] 黎作武,陈江,陈宝,等. 风力机组叶片的先进翼型族设计[J]. 空气动力学报,2012,30(1):130-136.
Li Zuo-wu,Chen Jiang,Chen Bao,et al. Design of advanced airfoil families for wind turbines[J]. Acta Aeridynamic Sinica,2012,30(1):130-136.
[8] 陈进,王旭东,王立存. 基于泛函的风力机翼型形状优化设计研究[J]. 太阳能学报,2010,31(5):643-646.
Chen Jin, Wang Xu-dong, Wang Li-cun. Shape optimization of general airfoil profiles for wind turbines based on functional theory[J]. Acta Energiae Solaris Sinica,2010,31(5):643-646.
[9] 陈进,蒋传鸿,谢翌,等. 典型霜冰条件下的风力机翼型优化设计[J]. 机械工程学报,2014,50(7):154-160.
Chen Jin, Jiang Chuan-hong, Xie Yi, et al. Optimization design of airfoil for wind turbine under typical rime icing conditions[J]. Journal of Mechanical Engineering,2014,50(7):154-160.
[10] Wang Quan, Chen Jin, Pang Xiao-ping, et al. A new direct design method for the medium thickness wind turbine airfoil[J]. Journal of Fluids and Structures,2013,43:287-301.
[11] 廖庚华,刘庆平,陈坤,等. 基于CATIA的轴流风机叶片仿生参数化建模[J]. 吉林大学学报:工学版,2012,42(2):403-406.
Liao Geng-hua,Liu Qing-ping,Chen Kun,et al. Parameterized modeling of bionic blade of axial fan based on CATIA[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(2):403-406.
[12] 葛长江,葛美辰,梁平,等. 仿生缝翼的曾升作用[J]. 吉林大学学报:工学版,2014,44(2):387-391.
Ge Chang-jiang, Ge Mei-chen, Liang Ping, et al. High-lift effect of bionic slat[J]. Journal of Jilin University(Engineering and Technology Edition), 2014,44(2): 387-391.
[13] Abbott I H, Albert E, Doenhofe V. Theory of Wing Sections: Including a Summary of Airfoil Data[M]. New York: Dover Publications, 1959.
[14] 张石强. 风力机专用翼型及叶片关键设计理论研究[D]. 重庆:重庆大学机械工程学院,2010.
Zhang Shi-qiang. Study on the key theory of wind turbine blade and dedicated airfoils[D]. Chongqing: College of Mechanical Engineering, Chongqing University, 2010.
[15] Theodore T. Theory of wing sections of arbitrary shape[R]. Washington, DC, USA:National Advisory Committee for Aeronautics, 1931.
[16] Bir G S. User's guide to PreComp[DB/OL].[2015-05-15]. https://trace.tennessee.edu/cgi/viewcontent.cgi?filename=0&article=2311&context=utk_chanhonoproj&type=additional.
[17] Chun M, Niu Y. Airframe Stress Analysis and Sizing[M]. Hong Kong:Conmilit Press, 1999.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 吴蔚楠,崔乃刚,郭继峰,赵杨杨. 多异构无人机任务规划的分布式一体化求解方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1827-1837.
[4] 焦玉玲, 张鹏, 田广东, 邢小翠, 邹连慧. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1398-1404.
[5] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[6] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[7] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[8] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[9] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[10] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[11] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[12] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[13] 李启良, 曹冠宁, 李璇, 杨志刚, 钟立元. 三厢轿车多参数气动优化[J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[14] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[15] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王国林, 傅乃霁, 张建, 裴紫嵘. 基于K-R动力学模型的子午线轮胎硫化过程仿真[J]. 吉林大学学报(工学版), 2013, 43(03): 659 -664 .
[2] 迟学芬, 吴迪, 刘丹. 带有门限的IBP+MMBP/Geo/1/K休假排队系统[J]. 吉林大学学报(工学版), 2013, 43(03): 781 -787 .
[3] 龙雪琴, 关宏志, 秦焕美. 基于效率和安全的城市道路等级的自组织演化[J]. 吉林大学学报(工学版), 2013, 43(05): 1222 -1229 .
[4] 宗芳, 张屹山, 王占中, 李志瑶. 城市中心商业区停车收费分析[J]. 吉林大学学报(工学版), 2013, 43(05): 1235 -1240 .
[5] 赵伟, 孙汉旭, 贾庆轩, 张延恒, 于涛. 具有两种运动模式的球形机器人动力学建模与设计[J]. 吉林大学学报(工学版), 2013, 43(05): 1386 -1394 .
[6] 王胜满. 用于地铁车辆的不锈钢型材拉弯成形缺陷[J]. 吉林大学学报(工学版), 2013, 43(06): 1546 -1550 .
[7] 鹿传国, 冯新喜, 孔云波, 张迪. 基于Kullback-Leibler散度的无源传感器数据关联[J]. 吉林大学学报(工学版), 2013, 43(06): 1696 -1701 .
[8] 隗海林,王海洲,倪伟新,陈运峰,李君. 仿生非光滑表面对车用柴油机螺旋进气道流通特性的影响[J]. 吉林大学学报(工学版), 2014, 44(3): 668 -674 .
[9] 孙大许, 兰凤崇, 何幸福, 陈吉清. 双电机四驱电动汽车自适应复合防抱死控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1405 -1413 .
[10] 李蕙, 王延江, 刘宝弟, 刘伟锋, 王肖萌. 基于快速字典学习和特征稀有性的显著目标提取[J]. 吉林大学学报(工学版), 2016, 46(5): 1710 -1717 .