吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 970-980.doi: 10.13229/j.cnki.jdxbgxb20200882

• 农业工程·仿生工程 • 上一篇    

秸秆深埋还田机振动特性分析与结构优化

高文英(),林静(),李宝筏,王伟,谷士艳   

  1. 沈阳农业大学 工程学院,沈阳 110866
  • 收稿日期:2020-11-18 出版日期:2022-04-01 发布日期:2022-04-20
  • 通讯作者: 林静 E-mail:gaoneu_sy@163.com;synydxlj69@163.com
  • 作者简介:高文英(1985-),男,副教授,博士.研究方向:旱作农业机械化. E-mail: gaoneu_sy@163.com
  • 基金资助:
    国家自然科学基金项目(51275318);公益性行业(农业)科研专项项目(201503116-09);辽宁省农村经济委员会与质量技术监督局地方标准项目(2016160-27)

Vibration characteristics analysis and structural optimization of straw deep bury and returning machine

Wen-ying GAO(),Jing LIN(),Bao-fa LI,Wei WANG,Shi-yan GU   

  1. College of Engineering,Shenyang Agricultural University,Shenyang 110866,China
  • Received:2020-11-18 Online:2022-04-01 Published:2022-04-20
  • Contact: Jing LIN E-mail:gaoneu_sy@163.com;synydxlj69@163.com

摘要:

针对玉米秸秆深埋还田机田间作业过程中振动剧烈的问题,对其振动特性进行了研究,并以提高低阶固有频率为目标优化机具结构,提高机具作业效果。通过模态分析,获取机具的固有频率;田间测试得到机具8个测试点的振动特性及功率谱;应用ISIGHT耦合平台对机具主结构进行了参数优化,避开了机具外部主要激振频率。研究表明:机具在田间作业过程中的振动主要由前进速度、自身结构、外部激励及地表情况决定,覆土装置和镇压装置具有一定的吸能减振作用,其中机具尾部已经发生共振;影响机具振动的主频集中在8~16 Hz,接近机具1阶和2阶固有频率;优化后机具主结构的1阶固有频率提升至20.348 Hz,可有效避免共振。田间试验表明,机具优化后作业过程中振动减少,噪音降低,作业效果良好,为秸秆深埋还田机具的设计优化提供了一定的理论参考。

关键词: 农业机械化, 秸秆深埋还田机, 振动, 频率, 结构优化

Abstract:

To solving the problems of severe vibration and poor stability of maize straw deep bury and returning machine during the field operation, the vibration characteristics and influence rules of the machine are studied. In addition, increasing its low-order natural frequency is taken as the goal to optimize the structure of the implement and improve its operating effect. First, the natural frequencies of the machines are extracted through finite element modal analysis. Secondly, through the field testing, the amplitude statistical characteristics and power spectrum of the eight test points on the machines are obtained to analyze their impact on the vibration characteristics of the whole machine. Finally, based on the ISIGHT multidisciplinary software platform, the sequence quadratic programming method is used to optimize the parameters of the main structure of the implements, avoid the main external excitation frequency and optimize the structure of the implement. The research shows that machine vibration is mainly determined by forward speed, its own structure, and the conditions of soil and ground surface. When the implements operate, resonance has occurred at the tail of the frame, the covering device and the suppression wheel have a certain adsorption effect on vibration. Through the analysis on power spectrum, the main frequency that affects the vibration of the implement is concentrated at 8~16 Hz, which is close to the first-order and the second-order natural frequencies. The optimized first-order natural frequency of the main structure of the whole machine is increased to 20.348 Hz, which effectively avoids the resonance. The field experiment shows that the optimized implements can reduces vibration and noise during operation, and the effect of the operation is good, which provides a certain theoretical reference for the design optimization of the maize straw deep bury and returning machine.

Key words: agricultural mechanization, straw deep bury and returning machine, vibration, frequency, structural optimization

中图分类号: 

  • S222.4

表1

秸秆深埋还田机技术参数"

项 目技术参数
配套动力/kW45
外形尺寸(长×宽×高)/mm2790×1490×1560
行数2
适应行距/cm55~60
工作幅宽/mm1200
开沟装置类型螺旋式开沟
覆土器类型螺旋式覆土器
秸秆粉碎装置转速/(r?min-11620
开沟装置转速/(r?min-1270
最大开沟深度/mm300
开沟宽度/mm350
整机质量/kg1050

图1

秸秆深埋还田机总体结构1-悬挂装置;2-机架;3-输送装置;4-落料装置;5-镇压装置;6-覆土装置;7-螺旋开沟装置;8-后置传动箱;9-秸秆粉碎装置;10-动力输入轴;11-拖拉机后轮"

表2

机具材料特性参数"

材料弹性模量/GPa泊松比

密度/

(kg·m-3

屈服强度/GPa
45钢2100.317850355
Q2352070.297850220

图2

秸秆深埋还田机有限元模型returning machine"

表3

模型网格质量检查"

检查项目标准极差值结果
雅克比>0.60.61合格
长宽比<5.04.4合格
扭曲度<60°47.21合格
翘曲<5°0.96合格
三角形百分比<0.050.015合格

图3

机具模态振型"

图4

模态试验流程图"

图5

试验模态振型"

表4

有限元模态与试验模态对比"

阶数有限元模态试验模态相对误差/%
固有频率阵型固有频率阵型
114.720Y轴扭转13.824Y轴扭转6.48
217.147Z轴扭转17.763Z轴扭转3.47
336.736X轴扭转36.285X轴扭转1.24
445.248X轴弯曲+局部振型45.306X轴弯曲+局部振型0.13
547.524Z轴弯曲+局部振型47.951Z轴弯曲+局部振型0.89
655.910X轴弯曲+局部振型56.277X轴弯曲+局部振型0.65
760.744X轴弯曲+局部振型59.483X轴弯曲+局部振型2.12
872.910X轴弯曲+局部振型74.032X轴弯曲+局部振型1.52

表5

有限元约束模态分析结果"

阶 数固有频率/Hz主振型
115.374Y轴弯曲
217.028Z轴扭转
334.287X轴扭转
442.753X轴弯曲+局部振型
546.307弯扭组合
652.438Z轴弯曲+局部振型
763.826X轴弯曲+局部振型
875.602X轴弯曲+局部振型

图6

秸秆深埋还田机振动系统模型"

图7

田间振动测试"

图8

测点的振动信号"

表6

测试点振动信号的幅值分布 (m/s2)"

统计值测试点
测试点1测试点2测试点3测试点4测试点5测试点6测试点7测试点8
有效值16.51836.05849.91018.60832.69338.86640.46212.268
最大值108.127220.164304.167122.486262.394270.530189.75090.459
最小值-104.026-218.275-286.818-112.652-248.461-249.670-207.638-114.673

图9

不同测点功率谱密度"

图10

机具优化结构示意图1-加强筋;2-横梁1;3-横梁2;4-斜撑;5-横梁3;6-侧板;7-横梁4"

表7

优化前、后模态分析结果"

阶数优化前优化后

固有频

率/Hz

阵 型固有频率/Hz阵 型
115.374Y轴弯曲20.348Y轴扭转
217.028Z轴扭转32.657Z轴扭转
334.287X轴扭转42.741X轴弯曲+局部振型
442.753X轴弯曲+局部振型48.622Z轴弯曲+局部振型
546.307弯扭组合56.413Z轴弯曲+局部振型
652.438Z轴弯曲+局部振型59.288X轴弯曲+局部振型
763.826X轴弯曲+局部振型62.588X轴弯曲+局部振型
875.602X轴弯曲+局部振型73.221X轴弯曲+局部振型

表8

改进机具测试点振动信号的幅值分布 (m/s2)"

统计值测试点
测试点1测试点2测试点3测试点4测试点5测试点6测试点7测试点8
有效值15.65128.48536.64216.29424.38726.73930.82310.461
最大值90.749157.357231.662102.475190.341210.269124.63076.865
最小值-108.362-142.628-216.854-97.832-186.946-178.957-137.582-90.352

图11

优化前、后机具测试点的幅值对比"

1 田国成, 王钰, 孙路, 等. 秸秆焚烧对土壤有机质和氮磷钾含量的影响[J]. 生态学报, 2016, 36(2): 387-393.
Tian Guo-cheng, Wang Yu, Sun Lu, et al. Effects of wheat straw burning on content of soil organic matter, nitrogen, phosphorus and potassium[J]. Acta Ecologica Sinica, 2016, 36(2): 387-393.
2 Chen J, Zheng M, Pang D, et al. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(8): 1708-1719.
3 Pureta V L, Pereira E I P, Wittwer R, et al. Improvement of soil structure through organic crop management conservation tillage and grass-clover ley[J]. Soil and Tillage Research, 2018, 180: 1-9.
4 刘卉, 周清明, 黎娟. 秸秆还田对土壤改良及作物生长影响的研究进展[J]. 中国农学报, 2017, 33(32): 53-57.
Liu Hui, Zhou Qing-ming, Li Juan. Effect of straw returning on soil improvement and crop grows: research progress[J]. Chinese Agricultural Science Bulletin, 2017, 33(32): 53-57.
5 Yang H S, Xu M M, Koide R T, et al. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1141-1149.
6 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5) :1-21.
Wang Jin-wu, Tang Han, Wang Jin-feng. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21.
7 韩瑞芸, 陈哲, 杨世琦. 秸秆还田对土壤氮磷及水土的影响研究[J]. 中国农学通报, 2016, 32(9): 148-154.
Han Rui-yun, Chen Zhe, Yang Shi-qi. Effect of straw-returning on nitrogen and phosphorus and water of soil[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 148-154.
8 宋健鹏, 林静, 马铁, 等. 旋转锹式玉米秸秆深埋还田机的设计[J]. 农机化研究, 2018, 40(2): 95-99.
Song Jian-peng, Lin Jing, Ma Tie, et al. Design and test rotating spade type maize straw returning root deep machine[J]. Journal of Agricultural Mechanization Research, 2018, 40(2): 95-99.
9 王金武, 王奇, 唐汉, 等. 水稻秸秆深埋整秆还田装置设计与试验[J]. 农业机械学报, 2015, 46(9): 112-117.
Wang Jin-wu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and wholestraw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117.
10 李真. 玉米整秆深埋还田试验[J]. 山西农业科学, 2014, 42(4): 349-352.
Li Zhen. Experiment of whole maize straw returned to deep furrow and buried under ridge[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(4): 349-352.
11 王川, 邵陆寿, 施六林, 等. 秸秆深埋保护性耕作复合机具设计[J]. 中国农机化学报, 2014, 35(1): 117-120.
Wang Chuan, Shao Lu-shou, Shi Liu-lin, et al. Design of compound equipment with the deep straw and conservation tillage[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 117-120.
12 李永磊, 宋建农, 康小军, 等. 双辊秸秆还田旋耕机试验[J]. 农业机械学报, 2013, 44(6): 45-49.
Li Yong-lei, Song Jian-nong, Kang Xiao-jun, et al. Experiment on twin-roller cultivator for straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 45-49.
13 章志强,何进,李洪文,等. 可调节式秸秆粉碎抛撒还田机设计与试验[J]. 农业机械学报, 2017, 48(9): 76-87.
Zhang Zhi-qiang, He Jin, Li Hong-wen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87.
14 王瑞丽, 杨鹏, Rabiu F J, 等. 秸秆深埋还田开沟灭茬机设计与试验[J]. 农业工程学报, 2017, 33(5): 40-47.
Wang Rui-li, Yang Peng, Rabiu F J, et al. Designand experiment of combine machine for deep furrowing, stubble, chopping, returning and burying of chopped straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 40-47.
15 林静, 马铁, 李宝筏. 1JHL-2型秸秆深埋还田机设计与试验[J]. 农业工程学报, 2017, 33(20): 32-40.
Lin Jing, Ma Tie, Li Bao-fa. Design of 1 JHL-2 typestraw deep bury and returning machine[J]. Transactionsof the Chinese Society of Agricultural Engineering, 2017, 33(20): 32-40.
16 林静, 马铁, 高文英, 等. 秸秆深埋还田机螺旋开沟装置的设计与试验[J] .沈阳农业大学学报,2018, 49(1): 41-48.
Lin Jing, Ma Tie, Gao Wen-ying, et al. Design and experiment of spiral milling cutter device of straw deep bury and returning machine [J]. Journal of Shenyang Agricultural University, 2018, 49(1): 41-48.
17 姚艳春, 赵雪彦, 杜岳峰, 等. 考虑质量时变的收获机械工作模态分析与试验[J]. 农业工程学报, 2018, 34(9): 83- 94.
Yao Yan-chun, Zhao Xue-yan, Du Yue-feng, et al. Operating modal analysis and test of harvester induced by mass-varying process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 83-94.
18 李耀明, 孙朋朋, 庞靖, 等. 联合收获机底盘机架有限元模态分析与试验[J]. 农业工程学报, 2013, 29(3): 38-46.
Li Yao-ming, Sun Peng-peng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 38-46.
19 徐立章, 李耀明, 孙朋朋, 等. 履带式全喂入水稻联合收获机振动测试与分析[J]. 农业工程学报, 2014, 30(8): 49-55.
Xu Li-zhang, Li Yao-ming, Sun Peng-peng, et al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 49-55.
20 姚艳春, 宋正河, 杜岳峰, 等. 玉米收获机车架应力及模态数值模拟焊点模型优选[J]. 农业工程学报, 2016, 32(24): 50-58.
Yao Yan-chun, Song Zheng-he, Du Yue-feng, et al. Optimum seeking of spot weld model on numerical simulation of stress and modal analysis for corn combine harvester frame[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 50-58.
21 王奇, 朱龙图, 李名伟, 等. 指夹式玉米免耕精密播种机振动特性及对排种性能的影响[J]. 农业工程学报, 2019, 35(9): 9-18.
Wang Qi, Zhu Long-tu, Li Ming-wei, et al. Vibration characteristics of corn no-tillage fillage finger-type precision planter and its effect on seeding performance [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 9-18.
22 张佳喜, 杨程, 张丽, 等. 玉米起茬机构的强度及振动特性分析与试验[J]. 农业工程学报, 2018, 34(12): 72-78.
Zhang Jia-xi, Yang Cheng, Zhang Li, et al. Analysis and experiment on strength and vibration characteristics of corn stubble plucking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 72-78.
23 高志朋, 徐立章, 李耀明, 等. 履带式稻麦联合收获机田间收获工况下振动测试与分析[J]. 农业工程学报, 2017, 33(20): 48-55.
Gao Zhi-peng, Xu Li-zhang, Li Yao-ming, et al. Vibr-ation measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 48-55.
24 姚艳春, 杜岳峰, 朱忠祥, 等. 基于模态的玉米收获机车架振动特性分析与优化[J]. 农业工程学报, 2015, 31(19): 46-53.
Yao Yan-chun, Du Yue-feng, Zhu Zhong-xiang, et al. Vibration characteristics analysis and optimization of corn combine harvester frame using modal analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 46-53.
25 高文英, 林静, 李宝筏, 等. 玉米秸秆深埋还田机螺旋开沟装置参数优化与试验[J]. 农业机械学报, 2018, 49(9): 45-54.
Gao Wen-ying, Lin Jing, Li Bao-fa, et al. Parameter optimization and experiment for spiral type opener device of maize straw deep bury and returning machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 45-54.
26 刘习军, 贾启芬, 张素侠. 振动理论及工程应用[M]. 北京:机械工业出版社, 2017.
27 张晓冬,李成华,李建桥,等. 铲式玉米精密播种机振动特性模型建立与试验[J]. 农业机械学报, 2014, 45(2): 88-93.
Zhang Xiao-dong, Li Cheng-hua, Li Jian-qiao, et, al. Mathematic vibration model of spade punch planter of maize [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 88-93.
[1] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
[2] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[3] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[4] 施昕昕,黄家才,高芳征. 基于分数阶BICO滤波器的运动控制测量噪声抑制[J]. 吉林大学学报(工学版), 2021, 51(5): 1873-1878.
[5] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
[6] 杨建,夏琦,周海超,王国林. 修正胎体弦轮廓载重子午线轮胎的降噪机理[J]. 吉林大学学报(工学版), 2021, 51(4): 1198-1203.
[7] 李卫,张怀亮,瞿维. 随机振动环境下液压直管道设计方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1222-1229.
[8] 魏海斌,王相焱,王富玉,张勇. 基于振动成型AC-25沥青混合料力学性能及细观分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1269-1276.
[9] 王刚,刘慧力,贾洪雷,郭春江,丛永健,屈明浩. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527.
[10] 于萍,穆特,朱黎辉,周子业,宋杰. 钻具输送装置非线性动力学分析及稳定性控制[J]. 吉林大学学报(工学版), 2021, 51(3): 820-830.
[11] 胡明伟,王洪光,潘新安. 基于正交设计的协作机器人全域结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(1): 370-378.
[12] 吴昊天,郭锐锋,彭阿珍,王品. 一种考虑可靠性的常带宽服务器低功耗调度算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1802-1808.
[13] 刘钊,程江琳,朱玉田,郑立辉. 轨道车辆垂向振动建模及运动关联分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1600-1607.
[14] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[15] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!