吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2244-2255.doi: 10.13229/j.cnki.jdxbgxb20210307

• 车辆工程·机械工程 • 上一篇    

车用爪极发电机的气动噪声优化

黄泰明1(),李伟平2(),胡涛涛2,岳万昊2,纪念洲2,李域邦3   

  1. 1.湖南理工学院 机械工程学院,湖南 岳阳 414006
    2.湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
    3.中南大学 材料科学与工程学院,长沙 410083
  • 收稿日期:2021-04-12 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 李伟平 E-mail:htm426@hnu.edu.cn;lwpzlbb@yeah.net
  • 作者简介:黄泰明(1982-),男,副教授,博士. 研究方向:汽车空气动力学,气动噪声. E-mail: htm426@hnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51976055);湖南省自然科学基金项目(2019JJ40103);湖南省教育厅青年项目(18B359)

Aerodynamic noise optimization of vehicle claw-pole generator

Tai-ming HUANG1(),Wei-ping LI2(),Tao-tao HU2,Wan-hao YUE2,Nian-zhou JI2,Yu-bang LI3   

  1. 1.School of Mechanical Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China
    2.State Key Laboratory for Advanced Design and Manufacture of Automobile Body,Hunan University,Changsha 410082,China
    3.School of Materials Science and Engineering,Central South University,Changsha 410083,China
  • Received:2021-04-12 Online:2022-10-01 Published:2022-11-11
  • Contact: Wei-ping LI E-mail:htm426@hnu.edu.cn;lwpzlbb@yeah.net

摘要:

针对某型号车用爪极发电机在高转速工况下阶次气动噪声特性明显的问题,设计噪声测试实验获得主要阶次噪声,建立流场和声场数值仿真模型,分别对前、后风扇扇叶的压力分布、定子及转子的压力和声功率分布进行分析,研究不同部位对爪极发电机气动噪声的影响。通过矢量合成法对风扇扇叶分布角度进行了优化,对优化后的风扇扇叶分别进行仿真验证和装机试验,验证爪极发电机气动噪声优化效果。试验结果表明,优化后爪极发电机在整个转速范围内的8、12阶次的噪声平均减小量均达到了2.5 dB。

关键词: 车辆工程, 气动噪声, 爪极发电机, 矢量合成法

Abstract:

Aiming at the problem that a certain type of claw-pole generator has obvious order aerodynamic noise characteristics under high-speed conditions, a noise test experiment is designed to obtain the main order noise, and the finite element software is used to establish a numerical simulation model of the flow field and sound field. The pressure distribution of the front and rear fan blades, the pressure and sound power distribution of the stator and rotor are analyzed, and the influence of different parts on the aerodynamic noise of the claw-pole generator is studied. The fan blade distribution angle was optimized by the vector synthesis method, and the simulation and test are established for the optimized fan blade to verify the aerodynamic noise optimization effect of the claw-pole generator. Experimental results show that the average noise reduction of the 8th and 12th order of the optimized claw pole generator in the entire speed range has reached 2.5 dB.

Key words: vehicle engineering, aerodynamic noise, claw-pole generator, vector composition method

中图分类号: 

  • U463.63

图1

爪极发电机1-带轮;2-前端盖;3-转子;4-定子;5-整流器及电压调节器总成;6-后端盖;7-防护罩"

图2

实验现场"

图3

空载工况各阶次声功率级对比曲线"

图4

计算域和交界面"

图5

计算模型网格局部剖面图"

图6

网格无关性检验"

图7

声学计算模型"

图8

前、后风扇扇叶位置横截面压力云图"

图9

转子压力和声功率分布云图"

图10

定子压力和声功率分布云图"

图11

声功率分布"

图12

12 000 r/min时声功率级"

表1

前后风扇优化前后叶片角度分布 (°)"

扇叶序号

前风扇

原始叶片

前风扇

优化叶片

后风扇

原始叶片

后风扇

优化叶片

136.00036.00043.00041.003
230.00030.00029.00031.232
330.00030.00029.00028.631
424.00024.00029.00024.773
524.00024.00029.00039.747
624.00024.00036.00035.443
724.00024.00036.00035.735
824.00024.00043.00033.727
936.00036.00043.00053.866
1036.00036.00044.00037.415
1136.00036.000--
1236.00036.000--

图13

3D打印实物模型"

表2

优化前后各风扇扇叶轴向方向平均质量流量"

流量监测截面位置

转速

/(r·min-1

平均质量流量/(kg·s-1

变化量

/%

优化前优化后
前风扇80000.02830.02871.4
后风扇80000.03250.0322-0.9
前风扇12 0000.04090.04182.2
后风扇12 0000.04870.0474-2.7

图14

12 000 r/min工况下声功率级分布云图"

图15

优化后风扇位置截面压力云图"

图16

12 000 r/min优化前、后声功率级对比"

图17

后风扇优化前后试验测试曲线"

表3

后风扇优化前、后噪声试验测试主要阶次噪声变化"

转速

/(r·min-1

阶 次优化前/dB优化后/dB变化量/dB
8000668.3970.42-2.03
873.5169.603.91
1071.1270.150.97
1272.6469.493.15
1469.2469.60-0.36
1669.2670.03-0.77
12 000680.4882.97-2.49
884.7682.811.95
1081.2880.810.47
1282.7679.653.11
1483.0182.110.90

图18

优化前后总噪声级变化"

表4

优化后各阶次整体噪声变化量"

阶 次

最大减小量

/dB

最大增加量

/dB

平均变化量

/dB

6-0.9+4.7+2.2
8-5.1+0.2-2.5
9-1.4+3.6+1.0
10-3.1+0.7-1.0
11-3.3+4.0+0.2
12-5.2-0.4-2.8
14-1.9+2.6+0.1
16-2.9+1.8-0.3
24-3.4+1.6-1.1
1 Le Goff V, Vidal V, Fakes M, et al. Flow induced noise predictions of an automotive alternator using a lattice boltzmann method[C]∥Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Düsseldorf, Germany, 2014: 45578.
2 Kim W, Jeon W H, Hur N, et al. Development of a low-noise cooling fan for an alternator using numerical and doe methods[J]. International Journal of Automotive Technology, 2011, 12(2): 307-314.
3 Khelladi S, Kouidri S, Bakir F, et al. Predicting tonal noise from a high rotational speed centrifugal fan[J]. Journal of Sound and Vibration, 2008, 313(1/2): 113-133.
4 Hua C, Zhang Y, Dong D, et al. Aerodynamic noise numerical simulation and noise reduction study on automobile alternator[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2047-2055.
5 Zhang J H, Chu W L, Zhang H G, et al. Numerical and experimental investigations of the unsteady aerodynamics and aero-acoustics characteristics of a backward curved blade centrifugal fan[J]. Applied Acoustics, 2016, 110: 256-267.
6 陈鑫, 王宁, 沈传亮, 等. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报: 工学版, 2020, 50(2): 426-436.
Chen Xin, Wang Ning, Shen Chuan-liang, et al. Effect of rearview mirror modeling on aerodynamic noise of front window[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 426-436.
7 Zheng W L, Yan C, Liu H K, et al. Comparative assessment of SAS and DES turbulence modeling for massively separated flows[J]. Acta Mechanica Sinica, 2016, 32(1): 12-21.
8 Kaltenbacher M, Escobar M, Becker S, et al. Numerical simulation of flow‐induced noise using LES/SAS and Lighthill's acoustic analogy[J]. International Journal for Numerical Methods in Fluids, 2010, 63(9): 1103-1122.
9 杨博, 胡兴军, 王夫亮. 轻型客车侧窗区域气动噪声的数值模拟与验证[J]. 吉林大学学报: 工学版, 2010, 40(4): 915-919.
Yang Bo, Hu Xing-jun, Wang Fu-liang. Numerical simulation and verification of aerodynamic noise from side window region of minivan[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(4): 915-919.
10 高富东, 王德心, 王海东, 等. 基于射流冲击作用的舰机适配性数值分析与优化[J]. 中国机械工程, 2020, 31(12): 1425-1436.
Gao Fu-dong, Wang De-xin, Wang Hai-dong,et al. Numerical analysis and optimization of carrier/air vehicle integrations based on jet impingements[J]. China Mechanical Engineering, 2020, 31(12): 1425-1436.
11 Zheng W L, Yan C, Liu H K, et al. Comparative assessment of SAS and DES turbulence modeling for massively separated flows[J]. Acta Mechanica Sinica, 2016, 32(1): 12-21.
12 詹福良, 徐俊伟. Virtual.Lab Acoustics声学仿真计算从入门到精通[M]. 陕西:西北工业大学出版社,2013: 336-408.
13 Curle N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
14 Zheng Z G, Li R X. The application of numerical simulation technology in the external aerodynamic noise field of high-speed train[J]. Applied Mechanics and Materials, 2012(101/102): 197-201.
15 Zheng Z Y, Li R X. Application of numerical simulation technology to prediction of aerodynamic dipole acoustics source on automobile surface[C]∥The 2nd International Conference on Digital Manufacturing & Automation, Zhangjiajie, China, 2011: 216-220.
16 汪怡平, 谷正气, 李伟平, 等. 汽车气动噪声数值计算分析[J]. 汽车工程, 2009, 31(4): 385-388.
Wang Yi-ping, Gu Zheng-qi, Li Wei-ping, et al. Numerical analysis of automobile aerodynamic noise[J]. Automotive Engineering, 2009, 31(4): 385-388.
17 胡坤, 顾中浩, 马海峰. ANSYS CFD疑难问题实例详解[M]. 北京:人民邮电出版社,2017.
18 Li W, Yue W, Huang T, et al. Optimizing the aerodynamic noise of an automobile claw pole alternator using a numerical method[J]. Applied Acoustics, 2020, 171: No. 107629.
19 Zuo S, Xie C, Wu X, et al. Numerical simulation and optimization of aerodynamic noise for claw pole alternator[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 233(3): 857-879.
20 张亚东, 董大伟, 闫兵, 等. 车用交流发电机气动噪声数值分析[J]. 振动与冲击, 2016, 35(1): 174-182, 187.
Zhang Ya-dong, Dong Da-wei, Yan Bing, et al. Numerical simulation analysis for aerodynamic noise of a vehicle alternator[J]. Journal of Vibration and Shock, 2016, 35(1): 174-182, 187.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[4] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[5] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[6] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[7] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[8] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[9] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[10] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[11] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[12] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[13] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[14] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!