吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2916-2923.doi: 10.13229/j.cnki.jdxbgxb20220503

• 计算机科学与技术 • 上一篇    下一篇

增强Bagging集成学习及多目标检测算法

车翔玖(),于英杰,刘全乐   

  1. 吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2022-05-01 出版日期:2022-12-01 发布日期:2022-12-08
  • 作者简介:车翔玖(1969-),男,教授,博士生导师. 研究方向:计算机图形学,大数据可视化.E-mail:chexj@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62172184);吉林省科技发展计划项目(20200401077GX)

Enhanced Bagging ensemble learning and multi⁃target detection algorithm

Xiang-jiu CHE(),Ying-jie YU,Quan-le LIU   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2022-05-01 Online:2022-12-01 Published:2022-12-08

摘要:

针对现有目标检测算法在医疗影像疾病检测中存在定位精度和分类准确率较低的问题,提出了一种基于动态加权Bagging集成学习的多目标检测方法。以胸部影像疾病检测为例,引入联合注意力(CA)模块增强区域感受野,提升弱学习器对目标区域的定位能力;使用动态加权Bagging集成学习方法,根据置信度赋予弱学习器投票权重,降低了模型方差,改善了泛化误差,提升了分类准确率。实验结果表明,在胸部影像疾病检测任务中,本文算法的平均检测精度达到41.9%,相较于YOLOv5原型提高了2.5%,同时G-mean提升了1.3%;将模型加权集成后,平均检测准确率达到81.06%,相较于原模型提升了1.58%,具有较高的定位精度和分类准确率。因此,本文算法可以更好地完成胸部影像疾病检测任务。

关键词: 计算机应用, 胸部影像疾病检测, 动态加权Bagging集成学习, 联合注意力

Abstract:

Aiming at the problems of low localization accuracy and classification accuracy in medical imaging disease detection by existing target detection algorithms, a multi-target detection method based on dynamic weighted Bagging ensemble learning was proposed. Taking chest imaging disease detection as an example, the Coordinate Attention (CA) module was introduced to enhance the receptive field of the region and improve the weak learner's ability to locate the target region. The dynamic weighted Bagging ensemble learning method was used to give the weak learner voting weight according to the confidence. The variance of the model was reduced, the generalization error was improved, and the classification accuracy was improved. The experimental results show that in the chest imaging disease detection task, the average detection accuracy of the proposed algorithm reaches 41.9%, which is 2.5% higher than that of the YOLOv5 prototype, and G-mean is improved by 1.3%; after the model is weighted and integrated, the average detection accuracy rate reaches 81.06%, which is 1.58% higher than the original model, and has high positioning accuracy and classification accuracy. Therefore, the proposed algorithm can better complete the task of chest imaging disease detection.

Key words: computer application, chest imaging disease detection, dynamically weighted Bagging ensemble learning, coordinate attention

中图分类号: 

  • TP391.4

图1

集成学习的一般结构"

图2

基于动态加权Bagging集成学习策略的检测方法框架"

图3

部分数据展示"

表1

疾病标签"

病理学标签疾病描述数量
主动脉扩张发生在主动脉血管壁的异常隆起3067
心脏扩大成年病人的心胸比率大于0.52300
实质化肺泡内充满液体、脓液、血液、细胞(包括肿瘤细胞)或其他物质,导致大叶性、弥漫性或多灶性不清混浊的病理过程。386
胸膜增厚涉及壁层或脏层胸膜的任何形式的增厚1981
胸腔积液胸腔内异常积液1032
肺纤维化肺里有多余的纤维组织1617

图4

数据增强"

图5

检测框尺寸"

图6

CA模块"

图7

类别分布占比"

图8

动态权重Bagging集成学习"

表2

集成学习的副作用"

模型测试例1测试例2测试例3
1
2
3
集成

表3

混淆矩阵"

真实情况预测结果
正例反例
正例TPFN
反例FPTN

表4

不同弱学习器查全率对比"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.5210.8300.5370.4340.4430.3540.520
YOLOv40.6320.7320.6040.5110.4820.3950.559
YOLOv50.6510.8000.6350.5320.5000.4520.595
CA-YOLOv50.6620.8280.6410.5380.5240.4640.610

表5

不同弱学习器mAP值对比"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.5000.5450.2020.1850.2830.1600.313
YOLOv40.6570.5250.2490.2090.3490.1900.363
YOLOv50.6720.5390.2630.2220.4020.2650.394
CA-YOLOv50.6990.5500.3230.2350.4280.2780.419

表6

不同弱学习器G-mean值对比"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
Faster-RCNN0.4630.5900.3750.4890.5000.4200.473
YOLOv40.5400.5810.3920.5240.5340.4610.505
YOLOv50.5890.5890.4030.5680.5380.4890.529
CA-YOLOv50.6020.5910.4420.5720.5430.5020.542

表7

模型集成前、后测试准确率对比 (%)"

方法主动脉扩张心脏扩大实质化胸膜增厚胸腔积液肺纤维化均值
CA-YOLOv584.7689.7878.1376.9371.3475.9279.48
+集成模型85.3890.6579.0378.5172.6277.7380.65
+动态权重85.5091.0379.8078.9172.8878.2381.06

图9

实际检测效果图对比"

图10

注意力热图对比"

1 de Carvalho Filho A O, de Sampaio W B, Silva A C, et al. Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index[J]. Artificial Intelligence in Medicine, 2014, 60(3): 165-177.
2 Choi W J, Choi T S. Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 37-54.
3 Zhang Z, Zhang X, Lin X, et al. Ultrasonic diagnosis of breast nodules using modified faster R-CNN[J]. Ultrasonic Imaging, 2019, 41(6): 353-367.
4 Ramachandran S, George J, Skaria S, et al. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans[C]∥Medical Imaging 2018: Computer-Aided Diagnosis, Houston, Texas, USA, 2018, 10575: 347-355.
5 Johnson J M, Khoshgoftaar T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1):1-54.
6 申彦, 朱玉全, 宋新平. 一种采用渐进学习模式的SBS-CLearning分类算法[J]. 江苏大学学报:自然科学版, 2018, 39(6): 696-703.
Shen Yan, Zhu Yu-quan, Song Xin-ping. A classification learning algorithm of SBS-CLearning using step-by-step learning model[J]. Journal of Jiangsu University(Natural Science Edition), 2018, 39(6): 696-703.
7 Kazemi Y, Mirroshandel S A. A novel method for predicting kidney stone type using ensemble learning[J]. Artificial intelligence in Medicine, 2018, 84:117-126.
8 Farahani F V, Ahmadi A, Zarandi M H F. Lung nodule diagnosis from CT images based on ensemble learning[C]∥2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Niagara Falls, ON, Canada, 2015:1-7.
9 Fitriyani N L, Syafrudin M, Alfian G, et al. Development of disease prediction model based on ensemble learning approach for diabetes and hypertension[J]. IEEE Access, 2019, 7:144777-144789.
10 Wang Yu-yan, Wang Du-juan, Geng Na, et al. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection[J]. Applied Soft Computing, 2019, 77: 188-204.
11 Zheng Hao, Zhang Yi-zhe, Yang Lin, et al. A new ensemble learning framework for 3D biomedical image segmentation[J]. AAAI Technical Track: Machine Learning, 2019, 33(1): 5909-5916.
12 Gao X Y, Amin A A, Shaban H H, et al. Improving the accuracy for analyzing heart diseases prediction based on the ensemble method[J]. Complexity, 2021, 2021:1-10.
13 Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014:580-587.
14 Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015:1440-1448.
15 Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
16 牛杰, 钱堃, 卜雄洙. 基于YOLOv3算法和深度特征的地点识别方法[J]. 江苏大学学报:自然科学版, 2021, 42(6): 733-737.
Niu Jie, Qian Kun, Bu Xiong-zhu. Place recognition method based on YOLOv3 and deep features[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 733-737.
17 Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016:779-788.
18 Nguyen H Q, Lam K, Le L T, et al. VinDr-CXR: an open dataset of chest X-rays with radiologist's annotations[J/OL].[2022-04-15]. file:∥/C:/Users/ADMINI~1/AppData/Local/Temp/MicrosoftEdgeDownloads/4fb2e789-21c9-43c9-b06b-d06266b169fb/s41597-022-01498 -w.pdf
19 王进, 黄超, 王科, 等. 基于属性敏感卷积神经网络的行人属性分类[J]. 江苏大学学报:自然科学版, 2019, 40(4): 431-438.
Wang Jin, Huang Chao, Wang Ke, et al. Pedestrian attribute classification based on label sensitive convolutional neural network[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(4): 431-438.
20 Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018:7132-7141.
21 Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[J] Lecture Notes in Computer Science, 2018,11211: 3-19.
22 Hou Qin-bin, Zhou Da-quan, Feng Jia-shi. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021:13713-13722.
23 袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(4): 620-629.
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629.
24 Kubat M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection[C]∥Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, Tennessee, USA, 1997:179-186.
25 Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[1] 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575.
[2] 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592.
[3] 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487.
[4] 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583.
[5] 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856.
[6] 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888.
[7] 胡丹,孟新. 基于时变网格的对地观测卫星搜索海上船舶方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1896-1903.
[8] 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871.
[9] 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880.
[10] 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841.
[11] 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656.
[12] 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665.
[13] 康耀龙,冯丽露,张景安,陈富. 基于谱聚类的高维类别属性数据流离群点挖掘算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1422-1427.
[14] 王文军,余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433.
[15] 陈雪云,贝学宇,姚渠,金鑫. 基于G⁃UNet的多场景行人精确分割与检测[J]. 吉林大学学报(工学版), 2022, 52(4): 925-933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李晓磊,李丹,殷涌光. 酶法制备直链麦芽寡糖[J]. 吉林大学学报(工学版), 2009, 39(06): 1559 -1562 .
[2] 宋传学, 高晋, 杨树凯. 悬架对整车平顺性影响的虚拟仿真分析[J]. 吉林大学学报(工学版), 2010, 40(增刊): 6 -00012 .
[3] 郭耸, 顾国昌, 蔡则苏, 刘海波, 沈晶. 基于肤色分割和改进的AdaBoostSVM算法的人脸检测[J]. 吉林大学学报(工学版), 2011, 41(02): 473 -0478 .
[4] 宋雨来,刘耀辉,朱先勇,王素环,于思荣. 钕对AZ91镁合金组织及机械性能的影响[J]. 吉林大学学报(工学版), 2006, 36(03): 289 -0293 .
[5] 鹿应荣,杨印生,吕锋 . 基于模糊聚类分析的车辆优化调度[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 147 -151 .
[6] 张英锋, 马彪, 朱愿, 张金乐. 基于超球面支持向量机的综合传动状态判别[J]. 吉林大学学报(工学版), 2012, 42(01): 13 -18 .
[7] 马迅,王贺,那景新. 车身概念设计阶段CAE分析的肋筋等效模型[J]. 吉林大学学报(工学版), 2009, 39(06): 1431 -1434 .
[8] 杨济匡1,叶映台1,彭倩1,吴沈荣2,郭杰2. 实体单元焊点模型在前纵梁碰撞仿真中的应用[J]. 吉林大学学报(工学版), 2011, 41(6): 1542 -1548 .
[9] 沈燕虎, 苏江, 刘勇, 杨志刚, 王坤坤. 双振子垂直驱动式压电振动送料器的设计[J]. 吉林大学学报(工学版), 2014, 44(6): 1669 -1675 .
[10] 张雷, 赵云伟, 杨卓, 赵继. 电流变抛光液剪切屈服特性[J]. , 2012, 42(05): 1145 -1150 .