吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1305-1312.doi: 10.13229/j.cnki.jdxbgxb20170765

• •    下一篇

基于电液耦合转向系统的商用车防失稳控制

赵伟强1, 高恪1, 王文彬2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.中国一汽智能网联开发院,长春 130011
  • 收稿日期:2017-07-19 出版日期:2018-09-20 发布日期:2018-12-07
  • 通讯作者: 宗长富(1962-),男, 教授,博士.研究方向:系统动力学仿真与控制.E-mail:zongcf@jlu.edu.cn
  • 作者简介:赵伟强(1977-),男,副教授,博士.研究方向:商用车系统动力学仿真与控制.E-mail:zwqjlu@163.com
  • 基金资助:
    国家自然科学基金项目(51575224)

Prevention of instability control of commercial vehicle based on electric-hydraulic coupling steering system

ZHAO Wei-qiang1, GAO Ke1, WANG Wen-bin2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022, China;
    2.China FAW Group Co., LTD CAV Development Institute,Changchun 130011,China
  • Received:2017-07-19 Online:2018-09-20 Published:2018-12-07

摘要: 基于一种电液耦合转向系统进行商用车中、高速转向行驶失稳预防控制研究,采用转向力矩控制方法,通过主动调整助力使车辆时刻行驶在稳定区内,从而达到预防车辆失稳的目的。简述了电液耦合转向系统结构,进而对利用转向系统预防车辆失稳的可行性进行了说明,并建立了车辆2-DOF参考模型,采用柔性PID与自适应递增算法对线性和非线性两种行驶状态进行单独控制,得到补偿力矩。利用所搭建的电液耦合转向系统硬件在环试验台对提出的控制方法进行验证,结果显示,车辆处于临界失稳状态时电机助力矩与转向轮转角减小,横摆角速度减小,有效保证了车辆时刻行驶在稳定区域内。

关键词: 车辆工程, 电液耦合转向系统, 失稳预防控制, 柔性比例-积分-微分控制, 自适应递增算法

Abstract: The commercial vehicle is prone to instability when the vehicle is turning and driving at high speed. The control of the prevention of instability is carried out based on a kind of electric-hydraulic coupling steering system. A method of torque control is adopted that the power is actively adjusted to ensure the vehicle driving in the stable area to prevent instability. First, the structure of electric-hydraulic coupling steering system is briefly described. Second, the theoretical analysis of the vehicle instability is carried out, then the steering system can be used to control the stability of the vehicle and the 2-DOF reference model is built. Third, based on the flexible PID, the desired value of the yaw rate is tracked. The adaptive increasing algorithm is used to reduce the power of assist motor when the driving condition exceeds the stable area. Considering the change of road adhesion coefficient, the vehicle stable for prevention of instability can be obtained. The output value to the motor consists of the compensation value and the basic power value. The power characteristics of the motor are adjusted by the compensation value, so as to achieve prevention of instability control of commercial vehicles on different roads. In order to verify the control method, a hardware in the loop experiment based on electric-hydraulic coupling steering system was carried out. Results show that when the vehicle is in a critical state, the torque of the motor and the steering wheel angle both decrease, the yaw rate decreases. Therefore, the instability phenomenon can be effectively suppressed using the proposed method on different roads.

Key words: vehicle engineering, electric-hydraulic coupling steering system(EHCS), prevention of instability control, flexible-PID, adaptive increasing algorithm

中图分类号: 

  • U461.6
[1] Tollebeek J.Men of character: the emergence of the modern humanities[J]. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics, 2011, 225(2):179-192.
[2] 宗长富,韩小健,赵伟强,等.基于动态LTR的客车防侧翻控制[J].中国公路学报,2016,29(9):136-142.
Zong Chang-fu, Han Xiao-jian, Zhao Wei-qiang, et al.Anti-rollover control of bus based on dynamic LTR[J].China Journal of Highway and Transport, 2016, 29(9):136-142.
[3] Gao Y, Shen Y H, Cao S R, et al.An active stability controller design for e-drive articulated steer vehicles[C]∥Control Conference (CCC), IEEE, 2016: 8993-8998.
[4] 杨炜,魏朗,刘晶郁.商用车横向稳定性优化控制联合仿真分析[J].机械工程学报,2017,53(2):115-123.
Yang Wei, Wei Lang, Liu Jing-yu.Co-simulation analysis of commercial vehicle lateral stability optimization control[J].Journal of Mechanical Engineering,2017,53(2):115-123.
[5] Kim W, Yi K, Lee J.An optimal traction, braking, and steering coordination strategy for stability and manoeuvrability of a six-wheel drive and six-wheel steer vehicle[J]. Journal of Automobile Engineering, 2012, 226(1): 3-22.
[6] Mammar S, Koenig D.Vehicle handling improvement by active steering[J].Vehicle System Dynamics,2002,38(3):212-238.
[7] Huang Kai-qi, Ling Lao.Auto anti-interference sliding mode control based on active front steering[C]∥The 27th Chinese Control and Decision Conference (2015 CCDC),IEEE, 2015:3533-3538.
[8] Liu S.Research on electronic control system of heavy vehicle multi-axle steering[C]∥3rd International Conference on Management, Education, Information and Control, Shenyang, China,2015:643-648.
[9] Wang J, Wang R, Jing H, et al.Coordinated active steering and four-wheel independently driving/braking control with control allocation[J]. Asian Journal of Control, 2016, 18(1): 98-111.
[10] Cairano S D, Tseng H E, Bernardini D, et al.Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1236-1248.
[11] Abe M.Vehicle dynamics and control for improving handling and active safety:from four-wheel steering to direct yaw moment control[J].Journal of Multi-body Dynamics,1999,213(2):87-101.
[12] 谢伟东, 郑志谊, 付志军. 客车绊倒侧翻预警及DB+AFS集成控制研究[J]. 浙江工业大学学报, 2015, 43(3):246-250.
Xie Wei-dong, Zheng Zhi-yi, Fu Zhi-jun.Bus rollover warning and DB+AFS integrated control research[J]. Journal of Zhejiang University of Technology,2015,43(3):246-250.
[13] Ji Y, Guo H, Chen H.Integrated control of active front steering and direct yaw moment based on model predictive control[C]∥The 26th Chinese Control and Decision Conference(2014 CCDC),IEEE,2014:2044-2049.
[14] Bardawil C, Talj R, Francis C, et al.Integrated vehicle lateral stability control with different coordination strategies between active steering and differential braking[C]∥Intelligent Transportation Systems (ITSC), IEEE, 2014: 314-319.
[15] 赵林峰, 陈无畏, 秦炜华,等. 低附着路面条件的EPS控制策略[J]. 机械工程学报, 2011, 47(2):109-114.
Zhao Lin-feng, Chen Wu-wei, Qin Wei-hua, et al.Electric power steering on low friction coefficient road[J].Journal of Mechanical Engineering,2011,47(2):109-114.
[16] 赵林辉,刘志远,陈虹. 车速和路面附着系数的滚动时域估计[J]. 汽车工程,2009,31(6):520-525.
Zhao Lin-hui, Liu Zhi-yuan, Chen Hong.The estimation of vehicle speed and tire road adhesion coefficient using moving horizon strategy[J].Automotive Engineering,2009,31(6):520-525.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[7] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[8] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[9] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[10] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[11] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[12] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[13] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[14] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[15] 于亮, 李和言, 马彪, 李慧珠, 李明阳. 多片离合器轴向平均比压的衰减特性[J]. 吉林大学学报(工学版), 2018, 48(4): 990-997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李静, 韩佐悦, 杨威, 邢国成, 周瑜. 基于非线性模型的磁流变半主动悬架驱动系统[J]. 吉林大学学报(工学版), 2018, 48(3): 645 -651 .
[2] 张琳, 章新杰, 郭孔辉, 王超, 刘洋, 刘涛. 未知环境下智能汽车轨迹规划滚动窗口优化[J]. 吉林大学学报(工学版), 2018, 48(3): 652 -660 .
[3] 赵二辉, 马彪, 李和言, 杜秋, 吴健鹏, 马成男. 非均匀接触对湿式离合器摩擦特性的影响[J]. 吉林大学学报(工学版), 2018, 48(3): 661 -669 .
[4] 李启良, 曹冠宁, 李璇, 杨志刚, 钟立元. 三厢轿车多参数气动优化[J]. 吉林大学学报(工学版), 2018, 48(3): 670 -676 .
[5] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677 -687 .
[6] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688 -693 .
[7] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694 -703 .
[8] 孙宝凤, 高坤, 申琇秀, 梁婷. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报(工学版), 2018, 48(3): 704 -711 .
[9] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712 -719 .
[10] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727 -734 .