吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2265-2277.doi: 10.13229/j.cnki.jdxbgxb20210256

• 车辆工程·机械工程 • 上一篇    

机液复合传动装置构型分析

朱镇1,2,3(),王登峰1,孙晓东1,3(),曾令新3,蔡英凤3,陈龙3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.拖拉机动力系统国家重点实验室,河南 洛阳 471000
    3.江苏大学 汽车工程研究院,江苏 镇江 212013
  • 收稿日期:2021-04-01 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 孙晓东 E-mail:zhuzhenjs@126.com;xdsun@ujs.edu.cn
  • 作者简介:朱镇(1985-),男,副教授,博士. 研究方向:车辆系统动力学.E-mail:zhuzhenjs@126.com
  • 基金资助:
    国家自然科学基金项目(52272435);汽车仿真与控制国家重点实验室项目(20201201);拖拉机动力系统国家重点实验室项目(SKT2022011)

Configuration analysis of hydro⁃mechanical composite transmission devices

Zhen ZHU1,2,3(),Deng-feng WANG1,Xiao-dong SUN1,3(),Ling-xin ZENG3,Ying-feng CAI3,Long CHEN3   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.State Key Laboratory of Power System of Tractor,Luoyang 471000,China
    3.Automobile Engineering Research;Institute,Jiangsu University,Zhenjiang 212013,China
  • Received:2021-04-01 Online:2022-10-01 Published:2022-11-11
  • Contact: Xiao-dong SUN E-mail:zhuzhenjs@126.com;xdsun@ujs.edu.cn

摘要:

针对液压传动模式和机械传动模式各自的优缺点,结合功率分、汇流机构的特点,进行了构型分析,并提出5种典型的机液复合传动方案。根据机构运动学介绍了各传动方案的结构,结合各传动方案相应的调速特性曲线,分析了不同工作模式的特点。以其中一个具有典型的传动装置为研究对象,建立Simulation X仿真模型,设置离合器的接合顺序,分析了其在不同挡位下液压系统、汇流机构、输出轴的速度变化曲线。结果表明:该变速传动装置实际调速曲线与理论调速曲线基本一致,能在较大范围内实现良好的无级调速功能,相关研究成果可为机液复合传动的实际工程运用提供理论参考。

关键词: 车辆工程, 机液复合传动, 高效无级调速, 传动方案, 调速特性, SimulationX

Abstract:

According to the advantages and disadvantages of hydrostatic transmission mode and mechanical transmission mode, and the characteristics of power split mechanism and power confluence mechanism, the configuration analysis was carried out, and 5 typical hydro-mechanical composite transmission schemes was put forward. The structures of each transmission scheme were introduced according to mechanism kinematics, and the characteristics of different working modes were analyzed by combined with speed regulation characteristic curves of each transmission. Taking a typical transmission device as the research object, the simulation model based on Simulation X was built, the engaging sequence of clutches was set up, the speed changing curves of hydraulic system, confluence mechanism and output shaft in different gears were analyzed. The results show that, the actual speed regulation curves of variable speed transmission device are consistent with the theoretical speed regulation curves basically, a good continuous speed regulation function in a large range is realized, and the related research results of hydro-mechanical composite transmission can provide theoretical reference for the practical engineering application.

Key words: vehicle engineering, hydro-mechanical composite transmission, high efficiency stepless speed regulation, transmission schemes, speed regulation characteristics, Simulation X

中图分类号: 

  • U463.2

图1

机液复合传动装置结构原理"

图2

方案一结构原理图"

表1

方案一切换元件状态"

传动模式档 位切换元件
SBC1C2C3C4
液压传动F(H)

前进挡

机液传动(功率分流)FA(HM)
机液传动(功率汇流)FB(HM)
机械传动F(M)
液压传动R(H)后退档

图3

方案一调速特性曲线"

图4

方案二结构原理图"

表2

方案二切换元件状态"

传动模式挡位切换元件
B1B2B3B4B5B6C1C2C3C4C5C6C7F1F2F3
液压传动F(H)
R(H)

机液传动

(功率分流)

FA1(HM)
FA2(HM)
FA3(HM)
FA4(HM)

机液传动

(功率汇流)

FB1(HM)
FB2(HM)
FB3(HM)
FB4(HM)
机械传动F1(M)
F2(M)
F3(M)
F4(M)
R(M)

图5

方案三结构原理图"

表3

方案三切换元件状态"

传动模式挡位切换元件
BC0C1C2C3C4C5C6C7C8C9C10
液压传动F(H)
R(H)
机液传动F1(HM)
F2(HM)
F3(HM)
F4(HM)
R1(HM)
R2(HM)
机械传动F1(M)
F2(M)
F3(M)
F4(M)
R1(M)
R2(M)

图6

方案三调速特性曲线"

图7

方案四结构原理图"

表4

方案四切换元件状态"

传动模式挡位切换元件
B1B2C0C1C2C3C4C5C6C7
单流传动H
G
V
双流传动GV
HG
HV

能量管理

系统

传动系统制动能量回收
动力输出系统能量回收
能量管理系统驱动传动系统
能量管理系统驱动动力输出系统

图8

方案四调速特性曲线"

图9

方案五结构原理图"

表5

方案五切换元件状态"

传动模式挡位切换元件
S1S2C1C2C3C4C5C6C7C8

机液传动

(正向)

F3N(HM)
F3P(HM)
F2N(HM)
F2P(HM)
F1N(HM)
F1P(HM)
液压传动F(H)
R(H)

机液传动

(负向)

R1P(HM)
R1N(HM)

图10

方案五调速特性曲线"

图11

方案五仿真模型"

图12

方案五理论计算和仿真模型对比曲线"

图13

方案五转速变化曲线仿真结果"

1 Xia Y, Sun D Y, Qin D T, et al. Study on the design method of a new hydromechanical continuously variable transmission system[J]. IEEE Access, 2020,8: 195411-195424.
2 Bao Y, Zhong Z M, Yang S J. Modeling of power transition in full power shift of hydro-mechanical transmission[J]. Mathematical Problems in Engineering, 2020, 2020(3): 1-14.
3 罗俊林, 吴维, 苑士华, 等. 液压机械无级变速器速比自抗扰控制研究[J]. 汽车工程, 2021, 43(3): 374-380, 404.
Luo Jun-lin, Wu Wei, Yuan Shi-hua, et al. Study on active disturbance rejection control for speed ratio of hydro-mechanical continuously variable transmission[J]. Automotive Engineering, 2021, 43(3): 374-380, 404
4 夏光, 夏岩, 唐希雯, 等. 采用滑转率-阻力区间划分法的拖拉机双流传动系统调速控制[J].农业工程学报, 2021, 37(3): 47-55.
Xia Guang, Xia Yan, Tang Xi-wen, et al. Speed regulation control of the dual-flow transmission system for a tractorusing slip rate-resistance interval division[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 47-55.
5 曹付义, 李豪迪, 席志强, 等. 液压机械复合传动系统模式切换过程同步控制[J]. 西安交通大学学报, 2019, 53(8): 56-67, 75.
Cao Fu-yi, Li Hao-di, Xi Zhi-qiang, et al. Synchronous control of mode switching process for hydro-mechanical compound transmission system [J]. Journal of Xi'an Jiaotong University, 2019, 53(8): 56-67, 75.
6 杨树军, 张曼, 曾盼文, 等. 液压机械无级传动全功率换段过程排量比调节模型[J]. 农业工程学报, 2019, 35(13): 64-73.
Yang Shu-jun, Zhang Man, Zeng Pan-wen, et al. Model of regulating displacement ratio in full power shifting process of hydro-mechanical variable transmission[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 64-73.
7 Ahn S, Choi J, Son H,et al. Development of a new sub-shift schedule and control algorithm for a hydro-mechanical transmission[J]. Advances in Mechanical Engineering, 2016, 8(12):1-14.
8 Yu J, Cao Z, Cheng M, et al. Hydro-mechanical power split transmissions: Progress evolution and future trends[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019,233(3): 727-739.
9 Macora Alarico, Benatob Alberto, Rossettic Antonio, et al. Study and simulation of a hydraulic hybrid powertrain[J]. Energy Procedia, 2017, 126: 1131–1138.
10 Rossetti Antonio, Macor Alarico. Multi-objective optimization of hydro-mechanial power split transmissions[J]. Mechnism and Machine Theory, 2013, 62: 112-128.
11 Liu Fang-xu, Wu Wei, Hu Ji-bin, et al. Design of multi-range hydro-mechanical transmission using modular method[J]. Mechanical Systems and Signal Processing, 2019, 126: 1-20.
12 Yu Xia, Sun Dong-ye, Qin Da-tong, et al. Optimisation of the power-cycle hydro-mechanical parameters in a continuously variable transmission designed for agricultural tractors[J]. Biosystems Engineering, 2020, 193: 12-24.
13 闫丽娟,孙辉,刘伟,等. 行走工程机械液压混合动力技术[J].吉林大学学报:工学版, 2014, 44(2): 364-368.
Yan Li-juan, Sun Hui, Liu Wei, et al. Hydraulic hybrid technology of moving construction machinery [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 364-368.
14 唐新星,赵丁选,黄海东,等. 工程车辆等比三段式液压机械的复合传动[J].吉林大学学报:工学版, 2006, 36 (): 56-61.
Tang Xin-xing, Zhao Ding-xuan, Huang Hai-dong, et al. Three-stage with geometric ratios hydraulic-mechanical compound transmission for construction vehicle [J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(): 56-61.
15 王浩然,曹付义,马可,等. 拖拉机多模式机液复合传动装置设计[J]. 机械传动, 2020, 44(3): 66-71.
Wang Hao-ran, Cao Fu-yi, Ma Ke, et al. Design of multi-mode hydraulic mechanical composite transmission device for tractor [J]. Journal of Mechanical Transmission, 2020, 44(3): 66-71.
16 黄国勤,罗莎祁,胡博,等. 风电系统的混合式液压机械无级变速技术[J]. 华南理工大学学报: 自然科学版,2019,47(1): 95-102.
Huang Guo-qin, Luo Sha-qi, Hu Bo, et al. Hybrid hydro-mechanical continuously variable transmission technology for wind power system[J]. Journal of South China University of Technology(Natural Science Edition), 2019,47 (1): 95-102.
17 张明柱, 王全胜, 白东洋, 等. 基于拖拉机整机效率最大化的液压机械无级变速规律[J].农业工程学报, 2016, 32(21): 74-78.
Zhang Ming-zhu, Wang Quan-sheng, Bai Dong-yang, et al. Speed changing law of hydro-mechanical CVT based on maximum efficiency of tractors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (21): 74-78.
18 朱镇,蔡英凤,陈龙,等.一种混合动力多模式切换的无级变速传动系统[P].中国:201910041132.1,2019-01-16.
19 朱镇,蔡英凤,陈龙,等.一种机械液压复合传动装置及控制方法[P].中国:201911076475.8,2019-11-06.
20 朱镇,蔡英凤,陈龙,等.一种带双离合变速的液压机械传动装置及其控制方法[P].中国:202010101329.2,2020-02-19.
21 朱镇,蔡英凤,陈龙,等.一种集齿轮-液压-金属带为一体的多模式机液复合传动装置[P].中国:202010066884.6,2020-01-20.
22 朱镇,高翔,夏长高,等.单行星排汇流液压机械无级变速箱[P].中国:201410282040.X,2014-06-23.
23 朱镇,高翔,夏长高,等.单行星排汇流液压机械无级变速箱的离合器液压控制系统[P].中国:201410298022.0,2014-06-27.
24 朱镇. 液压机械无级变速器性能优化研究[D]. 镇江: 江苏大学汽车与交通工程学院, 2016.
Zhu Zhen. Optimization Research on the performance of hydro-mechanical continuously variable transmission [D]. Zhenjiang: School of Automotive and Traffic Engineering, Jiangsu University, 2016.
25 Zhu Zhen, Chen Long, Xia Chang-gao, et al. Test research on the adhesive and tractive performance of a wheeled tractor[J]. International Journal of Heavy Vehicle Systems, 2020, 27(1/2): 65-82.
[1] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[2] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[3] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[4] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[5] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[6] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[7] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[8] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[9] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[10] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[11] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[12] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[13] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[14] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!