吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2765-2777.doi: 10.13229/j.cnki.jdxbgxb20210401

• 车辆工程·机械工程 •    下一篇

基于双离合变速器的插电式混动系统起步控制策略

罗勇1,2(),隋毅3,申付涛2,孙强4,邓云霄2,韦永恒2   

  1. 1.中国汽车工程研究院股份有限公司 汽车噪声振动和安全技术国家重点实验室,重庆 401122
    2.重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054
    3.重庆科技学院 机械与动力工程学院,重庆 401331
    4.宁波洁程汽车科技有限公司 技术中心,宁波 315048
  • 收稿日期:2021-05-06 出版日期:2022-12-01 发布日期:2022-12-08
  • 作者简介:罗勇(1983-),男,副教授,博士. 研究方向:车辆动力传动与控制. E-mail:cquluo@126.com
  • 基金资助:
    国家自然科学基金项目(51305475);汽车噪声振动和安全技术国家重点实验室2017年度开放基金项目(NVHSKL-201702);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0076);重庆理工大学重大科研项目(2022TBZ003);宁波市科技创新2025重大专项项目(2019B10110)

Start up control strategy of plug in hybrid system based on double clutch transmission

Yong LUO1,2(),Yi SUI3,Fu-tao SHEN2,Qiang SUN4,Yun-xiao DENG2,Yong-heng WEI2   

  1. 1.State Key Laboratory of Vehicle NVH and Safety Control,China Automotive Engineering Research Institute Co. ,Ltd. ,Chongqing 401122,China
    2.Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Chongqing University of Technology,Chongqing 400054,China
    3.College of Mechanical and Power Engineering,Chongqing University of Science and Technology,Chongqing 401331,China
    4.Technical Center,Ningbo Jiecheng Automobile Technology Co. ,Ltd. ,Ningbo 315048,China
  • Received:2021-05-06 Online:2022-12-01 Published:2022-12-08

摘要:

针对双离合器插电式混动起步过程中多动力源和双离合器协调控制问题展开研究。首先,对系统不同起步模式进行动力学分析,建立了系统数学模型和起步性能评价指标。在此基础上,考虑了SOC、载荷、坡度等因素和驾驶员起步意图提出了系统起步模式决策方法,以最大冲击度为约束制定各起步模式动力源和双离合器协调控制策略。仿真结果表明:不同工况下起步模式选择合理,最大冲击度为7.31 m/s3,最大滑摩功为4.94 kJ,均控制在合理范围内,验证了本文策略的有效性。

关键词: 车辆工程, 插电式混合动力汽车, 双离合变速器, 起步过程控制, 道路工况, 驾驶员意图

Abstract:

The coordinated control of multiple power sources and dual clutches in the starting process of dual clutch plug-in hybrid vehicle is studied. Firstly, the dynamics of different starting modes of the system is analyzed, and the system mathematical model and starting performance evaluation index are established. On this basis, considering SOC, load condition, slope and other factors and the driver's starting intention, the system starting mode decision-making method is established. The coordinated control strategy of power source and dual clutch for each starting mode is formulated with the maximum impact as the constraint. The simulation results show that the selection of starting mode under different working conditions is reasonable. The maximum impact degree is 7.31 m/s3, and the maximum sliding friction work is 4.94 kJ, all within a reasonable range, which verifies the effectiveness of the strategy.

Key words: vehicle engineering, plug-in hybrid electric vehicle, dual clutch transmission, start-up process control, road conditions, driver's intention

中图分类号: 

  • U463.2

图1

基于DCT的P2.5-PHPS结构简图"

表1

不同起步类型动力源和离合器的工作状态"

起步类型动力源双离合器
发动机电机C1C2
纯电动起步不工作工作不工作不工作
单离合器C1起步工作不工作工作不工作
单离合器C2起步工作不工作不工作工作
联合起步C1最终结合工作不工作工作工作
联合起步C2最终结合工作不工作工作工作

图2

基于P2.5构型的DCT系统动力学简化模型"

图3

P2.5-PHPS起步模式选择策略"

图4

P2.5-PHPS起步过程控制逻辑"

图5

P2.5-PHPS起步仿真模型框架"

图6

发动机扭矩特性模型"

图7

P2.5驱动电机效率模型"

表2

研究对象部分基本参数"

参 数数值
整备质量/kg1580
轮胎半径/m0.308
滚动系数0.015
风阻系数0.31
迎风面积/m22.226
发动机峰值扭矩/(N·m)80
发动机峰值功率/kW45
P2.5电机峰值扭矩/(N·m)172
P2.5电机峰值功率/kW80
一/二挡到轮端速比(发动机)13.95/7.466
二挡到轮端速比(P2.5驱动电机)8.245

图8

驾驶员起步意图识别验证"

图9

纯电动起步仿真结果"

图10

发动机结合双离合器联合起步仿真结果"

图11

双动力源联合起步仿真结果"

1 罗勇,韦永恒,黄欢,等. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报:工学版,2021,51(5):1575-1582.
Luo Yong, Wei Yong-heng, Huang Huan, et al. Starting control of P2.5 plug⁃in hybrid configuration dual⁃clutch based on driver's intention recognition[J]. Journal of Jilin University(Engineering and Technology Edition), 2021,51(5): 1575-1582.
2 Yang Y, Zhang Y T, Tian J Y, et al. Adaptive real-time optimal energy management strategy for extender range electric vehicle[J]. Energy, 2020, 197: No.117237.
3 Hong J C, Wang Z P, Zhang T Z, et al. Research on integration simulation and balance control of a novel load isolated pure electric driving system[J]. Energy, 2019, 189: No.116220.
4 Kulkarni M, Shim T, Zhang Y. Shift dynamics and control of dual-clutch transmissions[J]. Mechanism and Machine Theory, 2007, 42(2): 168-182.
5 Goetz M, Levesley M C, Crolla D A. Dynamics and control of gearshifts on twin-clutch transmissions[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(8): 951-963.
6 Bao R, Avila V, Baxter J. Effect of 48 V mild hybrid system layout on powertrain system efficiency and its potential of fuel economy improvement[C]∥SAE Tech-nical Paper, 2017-01-1175.
7 Xu X, Liang Y, Jordan M, et al. Optimized control of engine start assisted by the disconnect clutch in a P2 hybrid automatic transmission[J]. Mechanical Systems and Signal Processing, 2019, 124: 313-329.
8 Yang C, Song J, Li L, et al. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus[J]. Mechanical Systems and Signal Processing, 2016, 76: 649-664.
9 Tao G, Wu M, Meng F. Online performance evaluation of a heavy-duty automatic transmission launching process[J]. Mechatronics, 2016, 38: 143-150.
10 Wang X, Li L, Yang C. Hierarchical control of dry clutch for engine-start process in a parallel hybrid electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 231-243.
11 Zhang Jin-le, Ma Biao, Zheng Chang-song, et al. Improved fuzzy control of dual clutch transmission during launch process[C]∥2010 IEEE International Conference on Mechatronics and Automation, Xi'an, China, 2010: 676-681.
12 Zhao Z G, Jiang J L, Yu Z P, et al. Start-up sliding mode variable structure that coordinates the control and real-time optimization of dry dual clutch transmissions[J]. International Journal of Automotive Technology, 2013, 14(6): 875-888.
13 Lu Xiao-hui, Gao Bing-zhao, Chen Hong. Q-learning based adaptive PID controller design for AMT clutch engagement during start-up process[C]∥Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012: 3131-3136.
14 Zhao Z, Li X, He L, et al. Estimation of torques transmitted by twin-clutch of dry dual-clutch transmission during vehicle's launching process[J]. IEEE Transactions on Vehicular Technology, 2016, 66(6): 4727-4741.
15 Zhao Z G, Chen H J, Zhen Z X, et al. Optimal torque coordinating control of the launching with twin clutches simultaneously involved for dry dual-clutch transmission[J]. Vehicle System Dynamics, 2014, 52(6): 776-801.
16 张军. DCT传动系统参数化建模及仿真分析[D]. 合肥:合肥工业大学机械与汽车工程学院, 2012.
Zhang Jun. Parametric modeling and simulation analysis of the DCT transmission system[D]. Hefei:College of Mechanical and Automotive Engineering, Hefei University of Technology, 2012.
17 Galvagno E, Velardocchia M, Vigliani A. Dynamic and kinematic model of a dual clutch transmission[J]. Mechanism and Machine Theory, 2011, 46(6): 794-805.
18 王伟,王庆年,田涌君,等. 基于模糊控制功率分流式混合动力客车控制策略[J]. 吉林大学学报: 工学版,2017,47(2): 337-343.
Wang Wei, Wang Qing-nian, Tian Yong-jun, et al. Control strategy of power-split hybrid electric bus based on fuzzy control[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 337-343.
19 Jiang G, Lin Y, Qin D, et al. Torque coordination control strategy in engine start-up process for a single motor hybrid electric vehicle[J]. International Journal of Electric and Hybrid Vehicles, 2018, 10(2):177-196.
20 Wu J, Zhang C H, Cui N X. Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition[J]. International Journal of Automotive Technology, 2012, 13(7):1159-1167.
21 Zhang N, Zhao F, Luo Y, et al. A dynamic coordinated control strategy for the mode-switch of HEV based on motor speed closed-loop control[J]. Automotive Engineering, 2014, 36(2):134-138.
22 Su Y, Hu M, Su L, et al. Dynamic coordinated control during mode transition process for a plug-in hybrid electric vehicle[J]. IEEE Access, 2019(7):53891-53908.
[1] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
[2] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[3] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[4] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[5] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[6] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[7] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[8] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[9] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[10] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[11] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[12] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[13] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[14] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭梅, 尹义龙, 杨卫辉. 基于区域水平的指纹纹线距离估计方法[J]. 吉林大学学报(工学版), 2005, 35(05): 537 -0541 .
[2] 裘建新, 王晰巍, 范晓春. 协同产品设计中计算机辅助设计系统与产品数据管理系统的信息集成[J]. 吉林大学学报(工学版), 2005, 35(05): 505 -0510 .
[3] 李永强,赵熹华,赵贺,李民,张伟华 . 预热温度对铝合金搭接激光焊
焊缝成形及组织的影响
[J]. 吉林大学学报(工学版), 2008, 38(05): 1065 -1068 .
[4] 安实,李静,崔娜 . ATIS环境下通勤者逐日出行路径更换行为仿真[J]. 吉林大学学报(工学版), 2009, 39(03): 587 -0592 .
[5] 段,孙同景,李振华, 黄长伟, 张光先. 全数字逆变电源IIR Butterworth数字滤波[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[6] 金敬福, 马毅, 刘玉荣, 丛茜. 长耳鸮翼型组的气动特性分析[J]. 吉林大学学报(工学版), 2010, 40(增刊): 278 -0281 .
[7] 于晓辉, 石要武. 色噪声背景下LFM信号参数估计的互谱ESPRIT方法[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .
[8] 孔繁森,王军,孙海港 . 基于层次分析法的发动机缸体生产线设备可用性的模糊综合评价[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[9] 何东野,杨慎华,寇淑清 . 发动机曲轴箱轴承座裂解加工数值分析[J]. 吉林大学学报(工学版), 2009, 39(01): 78 -82 .
[10] 石文孝, 龚静. 基于WiMAX技术的上行调度算法[J]. 吉林大学学报(工学版), 2010, 40(05): 1386 -1391 .