吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1264-1272.doi: 10.13229/j.cnki.jdxbgxb20210068

• 车辆工程·机械工程 • 上一篇    

Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比

李雄1,2(),兰凤崇1,2,陈吉清1,2(),童芳1,2   

  1. 1.华南理工大学 机械与汽车工程学院,广州 510640
    2.华南理工大学 广东省汽车工程重点实验室,广州 510640
  • 收稿日期:2021-01-22 出版日期:2022-06-01 发布日期:2022-06-02
  • 通讯作者: 陈吉清 E-mail:lixiong1008@163.com;chjq@scut.edu.cn
  • 作者简介:李雄(1990-),男,博士研究生. 研究方向:汽车碰撞安全. E-mail:lixiong1008@163.com
  • 基金资助:
    国家自然科学基金项目(52175267);广东省科技计划项目(2015B010137002)

Comparison of injuries in front impact between Hybird III dummy model and CHUBM human biomechanical model

Xiong LI1,2(),Feng-chong LAN1,2,Ji-qing CHEN1,2(),Fang TONG1,2   

  1. 1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China
    2.Guangdong Provincial Key Laboratory of Automotive Engineering,South China University of Technology,Guangzhou 510640,China
  • Received:2021-01-22 Online:2022-06-01 Published:2022-06-02
  • Contact: Ji-qing CHEN E-mail:lixiong1008@163.com;chjq@scut.edu.cn

摘要:

首先,采用Hybird III假人和CHUBM人体模型搭建了50 km/h速度下正面100%刚性壁障虚拟碰撞仿真平台。然后,建立了Hybird III假人座椅在A位置与CHUBM人体座椅分别在A和B位置的整车碰撞有限元模型,并对3种情况下驾驶员的头部、胸部及大腿损伤进行了对比分析。结果显示:座椅A位置的Hybird III假人和座椅B位置的CHUBM人体动态响应具有较好的一致性,不同座椅位置下的CHUBM人体的头部、胸部损伤均比Hybird III假人的高;CHUBM人体在座椅A位置的损伤比B位置的要高,同时肋骨发生了骨折现象。研究结果表明:CHUBM人体模型具有更加真实的人体解剖和仿生逼真度,对汽车约束系统的安全性评价要求更高,可为汽车安全性设计提供相应参考。

关键词: 车辆工程, CHUBM人体模型, Hybird III假人模型, 整车碰撞, 损伤对比

Abstract:

First, the Hybird III dummy and CHUBM human were used to build 50 km/h frontal 100% rigid barrier virtual collision simulation platform to conduct preliminary exploratory study. Then,three finite element models of the vehicle collision were established under the Hybird III dummy seat position A and CHUBM human seat position A and B. And three cases under the driver's head, chest and thigh injuries were compared by analysis in simulation. The results showed that Hybird III dummy of seat position A and CHUBM human of seat position B had a good consistency in the dynamic response. The head and chest injuries of CHUBM human under different seat positions were higher than Hybird III dummy. The injury indicators of CHUBM human at seat position A were higher than that at seat position B, and the fracture of human ribs was occurred. The research results show that the CHUBM human has more realistic human anatomy and bionic fidelity, and has higher requirements for the safety evaluation of vehicle restraint systems, which can provide corresponding reference for the safety protection design of vehicle.

Key words: vehicle engineering, CHUBM human model, Hybird III dummy model, vehicle collision, injury comparison

中图分类号: 

  • U461.91

图1

Hybird III假人和CHUBM人体有限元模型"

图2

整车碰撞有限元模型建立(局部视图)"

图3

整车碰撞动态响应对比"

图4

驾驶室约束系统人体动态响应对比"

图5

安全带肩带拉力"

图6

安全带腰带拉力"

图7

头部合成加速曲线对比"

表1

头部损伤参数对比"

指标Model 1Model 2Model 3
HIC36736.91926.951203.36
Acc_max/g73.6180.8188.21
Acc_3 ms/g72.1278.2484.01

图8

胸部压缩量对比"

表2

胸部损伤参数对比"

指标Model 1Model 2Model 3
C_max/mm324653
VC_max0.1680.3900.428

图9

驾驶员大腿轴向力对比分析"

表3

股骨压缩力峰值对比"

指标Model 1Model 2Model 3
右侧股骨压缩力/kN1.6380.4120.693
左侧股骨压缩力/kN1.7620.2640.450

图10

Hybird III假人与CHUBM人体膝部结构对比"

图11

CHUBM人体在不同座椅位置下肋骨应力云图"

1 Zhu F, Dong L, Jin X, et al. Testing and modeling the responses of hybrid III crash-dummy lower extremity under high-speed vertical loading[J]. Stapp Car Crash Journal, 2015, 59: 521-536.
2 Fildes B, Fitzharris M, Gabler H C, et al. Chest and abdominal injuries to occupants in far side crashes[C]∥Proceedings of the 20th International Technical Conference on Enhanced Safety of Vehicles, Washington, DC, USA, 2007:1-8.
3 Ma Z W, Jing L L, Wang J L, et al. Biomechanical analysis of occupant's brain response and injury in vehicle interior second impact utilizing a refined head finite element model[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(1): No. 1740018.
4 Mroz K, Bostrom O, Pipkorn B, et al. Comparison of hybrid III and human body models in evaluating thoracic response for various seat belt and airbag loading conditions[C]∥Proceedings of the International IRCOBI Conference on the Biomechanics of Injury, Hanover, Germany, 2010: 265-279.
5 Arun M W J, Umale S, Humm J R, et al. Evaluation of kinematics and injuries to restrained occupants in far-side crashes using full-scale vehicle and human body models[J]. Traffic Injury Prevention, 2016, 17(Sup.1): 116-123.
6 Ye X, Gaewsky J P, Miller L E, et al. Numerical investigation of driver lower extremity injuries in finite element frontal crash reconstruction[J]. Traffic Injury Prevention, 2018, 19(Sup.1):21-28.
7 Golman A J, Danelson K A, Miller L E, et al. Injury prediction in a side impact crash using human body model simulation[J]. Accident Analysis and Prevention, 2014, 64: 1-8.
8 阮世捷, 胡习之, 曲杰. 汽车安全与人体损伤生物力学的有限元模拟研究[J]. 华南理工大学学报: 自然科学版, 2007, 35(6): 1-7.
Ruan Shi-jie, Hu Xi-zhi, Qu Jie. Finite element simulation research of automotive safety and injury biomechanics of human body[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(6): 1-7.
9 Mueller B C, Sherwood C P, Arbelaez R A, et al. Comparison of Hybrid III and THOR dummies in paired small overlap tests[J]. Stapp Car Crash Journal, 2011, 55: 379-409.
10 中国汽车技术研究中心. C-NCAP管理规则[EB/OL]. [2020-12-21].
11 陈吉清, 杜天亚, 兰凤崇. 钝性碰撞中人体肝脏生物力学响应数值分析[J]. 吉林大学学报: 工学版, 2018, 48(2): 398-406.
Chen Ji-qing, Du Tian-ya, Lan Feng-chong. Numerical analysis of human liver biomechanical response to blunt impacts[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 398-406.
12 兰凤崇, 黄伟, 陈吉清, 等. 行人下肢高精度数值模型与损伤参数研究[J]. 湖南大学学报:自然科学版, 2016, 43(10): 42-51.
Lan Feng-chong, Huang Wei, Chen Ji-qing, et al. Development and injury parameters research of a FE model of lower limb with high precision for adult pedestrians[J]. Journal of Hunan University(Natural Sciences), 2016, 43(10): 42-51.
13 蔡志华, 兰凤崇, 陈吉清, 等. 基于汽车碰撞损伤的人体胸部有限元模型构建与验证[J]. 医用生物力学, 2013, 28(1): 36-43.
Cai Zhi-hua, Lan Feng-chong, Chen Ji-qing, et al. Development and validation for finite element model of human thorax based on automotive impact injuries[J]. Journal of Medical Biomechanics, 2013, 28(1): 36-43.
14 陈吉清, 吴凯, 兰凤崇, 等. 中国成年男性全颈椎生物力学建模与验证[J]. 汽车工程, 2016, 38(11): 1305-1311, 1318.
Chen Ji-qing, Wu Kai, Lan Feng-chong, et al. Biomechanics modeling and validation for all cervical vertebrae of chinese adult male[J]. Automotive Engineering, 2016, 38(11): 1305-1311, 1318.
15 Ma Z W, Chen J Q, Lan F C. Biomechanical response and injury effects on occupant's thorax-abdomen under seat belt loading[J]. International Journal of Vehicle Safety, 2015, 8(1): 1-21.
16 Du T Y, Chen J Q, Lan F C, et al. Thoracic response of the Chinese human body model in 50th percentile male size (CHUBM-M50) in blunt impacts-investigation in speed, direction and location[J]. International Journal of Crashworthiness, 2019, 24(1): 71-85.
17 张学荣, 刘学军, 陈晓东, 等. 正面碰撞安全带约束系统开发与试验验证[J]. 汽车工程, 2007, 29(12): 1055-1058.
Zhang Xue-rong, Liu Xue-jun, Chen Xiao-dong, et al. Development and test validation of safety belt restraint system for frontal impact[J]. Automotive Engineering, 2007, 29(12): 1055-1058.
18 韩勇, 杨济匡, 水野幸治, 等. 车辆碰撞速度对行人致命损伤风险的影响研究[J]. 汽车工程学报, 2011, 1(4): 399-406.
Han Yong, Yang Ji-kuang, Mizuno Koji, et al. Effects of vehicle impact velocity on pedestrian fatal injury risk[J]. Chinese Journal of Automotive Engineering, 2011, 1(4): 399-406.
19 张学荣, 黄硕, 许长龙, 等. 侧面碰撞中儿童测试假人与人体模型动态响应差异性研究[J]. 汽车工程学报, 2016, 6(6): 454-459.
Zhang Xue-rong, Huang Shuo, Xu Chang-long, et al. Study on dynamic response differences between child dummy and child human model in side impacts[J]. Chinese Journal of Automotive Engineering, 2016, 6(6): 454-459.
[1] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[2] 史文库,张曙光,张友坤,陈志勇,江逸飞,林彬斌. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报(工学版), 2022, 52(4): 764-772.
[3] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
[4] 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836.
[5] 庄蔚敏,陈沈,吴迪. 碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 819-828.
[6] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[7] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[8] 庄蔚敏,陈沈,王楠. 温度对车身钢铝胶铆连接结构热应力变化的影响[J]. 吉林大学学报(工学版), 2022, 52(1): 70-78.
[9] 陈剑斌,周宋泽,费峰永,陈永龙,凌国平. 过盈量及滚花方式对装配式凸轮轴压装失效的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1959-1966.
[10] 胡兴军,张靖龙,罗雨霏,辛俐,李胜,胡金蕊,兰巍. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1933-1942.
[11] 罗勇,韦永恒,黄欢,肖人杰,任淋,崔环宇. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报(工学版), 2021, 51(5): 1575-1582.
[12] 曾小华,宋美洁,宋大凤,王越. 基于车联网信息的公交客车行驶工况数据处理方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1692-1699.
[13] 马超,高云凯,刘哲,段月星,田林雳. 骨架式车身多材料及梁截面形状和尺寸优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1583-1592.
[14] 兰凤崇,李继文,陈吉清. 面向动态场景复合深度学习与并行计算的DG-SLAM算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1437-1446.
[15] 杨建,夏琦,周海超,王国林. 修正胎体弦轮廓载重子午线轮胎的降噪机理[J]. 吉林大学学报(工学版), 2021, 51(4): 1198-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!