吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1292-1300.doi: 10.13229/j.cnki.jdxbgxb20210094

• 车辆工程·机械工程 • 上一篇    

动臂塔机卸载冲击仿真及试验

刘洋()   

  1. 湖南师范大学 工程与设计学院,长沙 410081
  • 收稿日期:2021-01-25 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:刘洋(1981-),男,副教授,博士. 研究方向:起重机动力学分析. E-mail:liuyang@hunnu.edu.cn
  • 基金资助:
    国家留学基金项目(201908430262)

Unloading impact simulation and test of luffing jib tower crane

Yang LIU()   

  1. College of Engineering and Design,Hunan Normal University,Changsha 410081,China
  • Received:2021-01-25 Online:2022-06-01 Published:2022-06-02

摘要:

为研究动臂塔机在卸载冲击条件下的动力学行为,提出了基于非参数模型的起重机虚拟样机建模方法和起重机防后倾试验方法。通过液压防后倾装置特性试验和卸载器卸载试验,建立了描述液压防后倾装置阻尼特性的非参数模型和卸载载荷的激励函数。将动臂塔机刚柔耦合模型与通过单元试验建立的非参数模型集成为起重机虚拟样机模型,进行了系列卸载工况仿真。采用遥操作方法实施了动臂塔机防后倾试验,通过系列载荷试验验证了该仿真模型的有效性。通过虚拟仿真预测了极限卸载工况下起重机结构的动态响应,为起重机关键结构设计提供了定量依据。

关键词: 机械设计, 动臂塔机, 防后倾试验, 非参数模型, 虚拟样机

Abstract:

To address the dynamic behavior of luffing jib tower crane under unloading impact conditions, a virtual prototype modeling method of a crane based on a non-parametric model and a crane anti-backward-tilting test method are proposed. Firstly, through the characteristic test of the hydraulic anti-backward-tilting device (HATD) and the unloading test of the unloader, a non-parametric model describing the damping characteristics of the HATD and the excitation function of the unloading load are established respectively. Then, the rigid-flexible coupling model of the tower crane and the non-parametric model established through the unit test are integrated into the virtual prototype model of the crane, and the virtual prototype simulations under a series of unloading conditions are carried out. The remote operation method is used to implement the anti-backward-tilting test of a luffing jib tower crane, and the validity of the simulation model is verified through a series of load tests. Finally, the dynamic response of the crane structure under extreme unloading conditions is predicted through simulation, which provides a quantitative basis for the design of the key structure of the crane.

Key words: mechanical design, luffing jib tower crane, anti-backward-tilting test, non-parametric model, virtual prototype

中图分类号: 

  • TH212

图1

动臂塔机样机"

图2

液压防后倾装置"

图3

起重机虚拟样机建模方法"

图4

液压缓冲特性试验装置"

图5

作动器斜坡激励与作动力响应"

图6

作动速度与作动力之间关系"

图7

液压防后倾装置仿真模型"

图8

卸载器试验装置"

图9

突然卸载装置试验"

图10

卸载器拉力响应"

图11

起重机刚柔耦合模型"

图12

起重臂臂尖的位移响应"

图13

起重臂与防后倾装置碰撞仿真"

图14

起重机防后倾试验装置"

图15

动态响应测量方法"

表1

传感器表"

传感器型号量程安装位置
压力传感器MBS3050060G1151250×105 Pa阀块
倾角传感器赫斯曼倾角仪90°起重臂根
激光测距仪ODSL96BM/C6-20002 m油缸
拉力传感器板式电流型50T50 t吊钩与脱钩器之间
应变片BE120-3AA20 000 μm/m桁架结构
加速度计PCB 333B33±50g活塞杆

图16

卸载试验中液压防后倾装置动态响应"

图17

系列试验液压力试验值与仿真值对比"

表2

系列卸载工况的液压力峰值仿真与试验对比"

卸载载荷54%额定载荷60%额定载荷67%额定载荷73%额定载荷
误差/%2.17.36.39.1
仿真值/105Pa9.210.211.913.1
试验值/105Pa9.41111.212.0

图18

系列卸载冲击液压力预测"

1 屈福政,刘海涛. 履带起重机臂架后倾动力学仿真[J].起重运输机械, 2005, 44(12): 40-43.
Qu Fu-zheng, Liu Hai-tao. Backward tilting dynamics simulation of crawler crane[J]. Hoisting and Conveying Machinery, 2005, 44(12): 40-43.
2 王永新,李鹏举. 动臂塔机防后倾装置的分析与应用[J]. 建筑机械化, 2011, 32(3): 33-36.
Wang Yong-xin, Li Peng-ju. Analysis and application of anti-backward-tipping device of luffing jib tower crane[J]. Construction Mechanization, 2011, 32(3): 33-36.
3 Cveticanin L. Dynamic behavior of the lifting crane mechanism[J]. Mechanism and Machine Theory, 1995, 30(1): 141-151.
4 Kang Zhong-yuan, Xu Ge-ning, Yang Heng, et al. Research on dynamic properties of crane boom under the condition of accidental unloading[J]. Advances in Engineering Research, 2016, 103: 576-584.
5 刘洋,李宇力,付英雄,等. 基于缓冲力设计的变阻尼防后倾缓冲装置特性研究[J]. 中国工程机械学报, 2013, 11(1): 83-87.
Liu Yang, Li Yu-li, Fu Ying-xiong, et al. Property study on variable damping anti-backward buffer based on buffering force design[J]. Chinese Journal of Construction Machinery, 2013, 11(1): 83-87.
6 汪若尘, 黄欢, 孟祥鹏. 基于虚拟样机模型的液压ISD悬架动态性能分析[J]. 机械工程学报, 2015, 51(10): 137-142.
Wang Ruo-chen, Huang Huan, Meng Xiang-peng. Dynamic performance analysis of hydraulic ISD suspension based on virtual prototype model[J]. Journal of Mechanical Engineering, 2015, 51(10): 137-142.
7 李德义. 强夯机臂架防后倾系统研究[D]. 大连:大连理工大学机械工程学院, 2012.
Li De-yi. Research on boom reserving system of the compactor[D]. Dalian:School of Mechanical Engineering, Dalian University of Technology, 2012.
8 宋院归. 履带式起重机油气式防后倾装置仿真研究[D]. 大连:大连理工大学机械工程学院, 2010.
Song Yuan-gui. Simulation study of hydro-pneumatic anti-backward-tipping of crawler crane[D]. Dalian:School of Mechanical Engineering, Dalian University of Technology, 2010.
9 徐齐,王欣,王殿龙. 大型履带起重机防后倾系统机液耦合动力学分析[J]. 液压与气动, 2017, 40(9): 92-97.
Xu Qi, Wang Xin, Wang Dian-long. Hydraulic-mechanical coupling dynamic analysis on anti-dumping system of large scale crane[J]. Chinese Hydraulics & Pneumatics, 2017, 40(9): 92-97.
10 安效民,徐敏,陈士橹. 多场耦合求解非线性气动弹性的研究综述[J]. 力学进展, 2009, 39(3): 284-298.
An Xiao-min, Xu Min, Chen Shi-lu. An overview of CFD/CSD coupled solution for nonlinear aeroelasticity[J]. Advances in Mechanics, 2009, 39(3): 284-298.
11 Yao Shu-guang, Yan Kai-bo, Lu Si-si, et al. Energy-absorption optimisation of locomotives and scaled equivalent model validation[J]. International Journal of Crashworthiness, 2017, 22(4): 1-12.
12 Barethiye V M, Pohit G, Mitra A. Analysis of a quarter car suspension system based on nonlinear shock absorber damping models[J]. International Journal of Automative and Mechanical Engineering, 2017, 14(3): 4401-4418.
13 Yang Qing-le, Qu Fu-zheng, Yu Zhi-yuan, et al. Stress and stability analysis of slewing motion for crawler crane mounted on flexible ground[J]. Engineering Failure Analysis, 2019, 105: 817-827.
14 Ju F, Choo Y S, Cui F S. Dynamic response of tower crane induced by the pendulum motion of the payload[J]. International Journal of Solids and Structures, 2006, 43(2): 376-389.
15 Ju F, Choo Y S. Dynamic analysis of tower cranes[J]. ASCE Journal of Engineering Mechanics, 2005, 131(1): 88-96.
[1] 程亚兵,陈璐翔,葛平玉,杨泽宇,曹鹏宇. 双相正时套筒链的动力学仿真分析及磨损失效[J]. 吉林大学学报(工学版), 2022, 52(4): 781-788.
[2] 赵洋,肖洋,孙皓,霍文浩,冯松,廖勇. 基于围道积分的润滑接触齿轮微点蚀损伤特征模拟[J]. 吉林大学学报(工学版), 2022, 52(4): 799-810.
[3] 张朋成,彭斌,张宇波. 基于圆渐开线建立变截面涡旋齿的方法与理论[J]. 吉林大学学报(工学版), 2022, 52(4): 789-798.
[4] 张龙,徐天鹏,王朝兵,易剑昱,甄灿壮. 基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 368-376.
[5] 郑伟,孙见君,马晨波,於秋萍,张玉言,牛韬. 汽车轮毂加工夹具的研究现状及展望[J]. 吉林大学学报(工学版), 2022, 52(1): 25-36.
[6] 田晓超,王海刚,王虎,王志聪,赵剑,杨志刚,吴越. 悬臂式压电振子宽频发电装置设计及测试[J]. 吉林大学学报(工学版), 2021, 51(6): 1953-1958.
[7] 陈魏,雷雨龙,李兴忠,付尧,扈建龙,侯利国. 低速工况下渐开线圆柱直齿轮齿面粘着磨损计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1628-1634.
[8] 胡晶,李聪,张邦成,乔晓利,张心明,周笑平. 考虑离心膨胀的双级串联轴承油膜刚度和阻尼[J]. 吉林大学学报(工学版), 2021, 51(5): 1601-1611.
[9] 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650.
[10] 李晓韬,任金鹏,李晓旭,杨航. 双压电振子反相模态驱动的直线驱动器机理[J]. 吉林大学学报(工学版), 2021, 51(2): 468-471.
[11] 侯才生,刘涛,郭李先. 一种新型变壁厚涡旋型线的构建理论[J]. 吉林大学学报(工学版), 2020, 50(5): 1627-1634.
[12] 马芳武,韩丽,吴量,李金杭,杨龙帆. 基于遗传与粒子群算法的隔振平台减振性能优化[J]. 吉林大学学报(工学版), 2020, 50(5): 1608-1616.
[13] 程功,肖科,王家序,蒲伟,韩彦峰. 混合润滑状态下齿轮接触刚度[J]. 吉林大学学报(工学版), 2020, 50(2): 494-503.
[14] 毛艳,成凯. 基于Hopfield神经网络的单缸插销式伸缩臂伸缩路径优化[J]. 吉林大学学报(工学版), 2020, 50(1): 53-65.
[15] 郭震,于红英,滑忠鑫,赵娣. 刚性折纸机构运动分析及折叠过程仿真[J]. 吉林大学学报(工学版), 2020, 50(1): 66-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!