吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 53-65.doi: 10.13229/j.cnki.jdxbgxb20181272

• 车辆工程·机械工程 • 上一篇    下一篇

基于Hopfield神经网络的单缸插销式伸缩臂伸缩路径优化

毛艳(),成凯()   

  1. 吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2018-12-25 出版日期:2020-01-01 发布日期:2020-02-06
  • 通讯作者: 成凯 E-mail:maoyanduo@126.com;chengkai@jlu.edu.cn
  • 作者简介:毛艳(1975-),女,博士研究生.研究方向:工程机械性能. E-mail: maoyanduo@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0802703)

Telescoping path optimization of a single-cylinder pin⁃type multi⁃section boom based on Hopfield neural network

Yan MAO(),Kai CHENG()   

  1. College of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
  • Received:2018-12-25 Online:2020-01-01 Published:2020-02-06
  • Contact: Kai CHENG E-mail:maoyanduo@126.com;chengkai@jlu.edu.cn

摘要:

提出了单缸插销式伸缩臂伸缩路径优化问题,采用Hopfield神经网络构建了数学模型。由于能量方程中的约束项罚参数λ和目标项罚参数γ的确定往往相互矛盾:当λ占优时,能量方程更多朝向满足约束方向收敛,得到的有效解往往不是高质量解;当γ占优时,则可能收敛到无效解。为此,提出了λ为向上梯度递增、γ为向下梯度递减的曲线形式;对于λγ的增量确定,提出了一种基于约束边界偏差控制的PID自适应增量法,通过对约束边界偏差的PID控制使有效解的生成可控。实验结果表明:路径优化后伸缩效率能提升10%~30%。神经网络模型优化效果较好,几乎能100%收敛到有效解,同时由于PID控制使解聚集到约束边界,最优解生成率也较高,接近50%。

关键词: 机械设计, Hopfield神经网络, 单缸插销式伸缩臂, 伸缩路径优化, PID控制器

Abstract:

The issue of Telescoping Path Optimization (TPO) of Single-cylinder Pin-type Multi-section Boom (SPMB) was raised and its model is proposed by using Hopfield Neural Network (HNN). In an energy equation, it is difficult to balance the parameter λ of constrained term and the parameter γ of objective term. When λ dominates, network converges toward constraint satisfaction and a valid solution is often of poor quality. Whereas when γ dominates, network might converge to an invalid solution. To solve this problem, this paper proposes that the λ is gradient rising and the γ is gradient falling. A PID hybridized method based on Constraint Boundary Gap (CBG) control is presented to adaptively regulate the increments of λ and γ. Experimental results show that the telescoping efficiency improves 10%~30% after path optimization. TPO model achieves good optimization effect, and enables network converge almost 100% to a valid solution. The generation proportion of the optimal solution remains high at about 50% seeing that PID control often imposes a solution to the constraint boundary.

Key words: mechanical design, Hopfield neural network, single-cylinder pin-type multi-section boom, telescoping path optimization, proportional integral derivative(PID) controller

中图分类号: 

  • TH213

图1

臂长定义原则"

表1

优化前、后的伸缩路径步数对比"

步数 实例A 实例B
未优化 臂节 优化后 臂节 未优化 臂节 优化后 臂节
0 1 4 4 1 1 —— 1 4 4 1 1 —— 2 2 2 2 2 —— 2 2 2 2 2 ——
1 1 1 4 1 1 II 1 1 4 1 1 II 1 2 2 2 2 I 1 2 2 2 2 I
2 1 1 1 1 1 III 1 1 2 1 1 III 1 1 2 2 2 II 1 1 2 2 2 II
3 1 1 1 1 2 V 1 1 2 1 2 V 1 1 1 2 2 III 1 1 2 1 2 IV
4 1 1 1 2 2 IV 1 1 2 2 2 IV 1 1 1 1 2 IV 2 1 2 1 2 I
5 1 1 2 2 2 III 1 2 2 2 2 II 1 1 2 1 2 III
6 1 2 2 2 2 II 2 2 2 2 2 I 2 1 2 1 2 I
7 2 2 2 2 2 I

表2

三种参数设置形式的参数取值表"

HNN γ参数恒定,γ=常数 HNN γ定常数衰减;Δγ= Kγ ·γ(t) HNN γ PID;Δγ见式(5)
B=5, C=5 B=5, C=5 B=5, C=5
μ=μγ = 0.000 1 μλ =μγ =0.000 1 μλ =μγ =0.000 1
K p λ =10,K i λ =0.1,K d λ =1 K p λ =10,K i λ =0.1,K d λ =1 K p λ =10,K i λ =0.1,K d λ =1
γ=[1010101010] Kγ =10 K p γ =0.1,K i γ =0.01, K d γ =1
λ(0)=0 λ(0)=0,γ(0)=1 000 λ(0)=0,γ(0)=1 000

图2

从初始状态A=[2 2 2 2 2]到目标状态T=[2 1 2 1 2]的伸缩过程"

表3

三种参数设置γ的HNN计算结果对比"

数 据 最优 RBC 步数/路径 类型 3种γ取值类型
常数 增量 PID

A =[32321], T =

[12222]

V =[11122], V =

[11121]

6/3.6

6/3.6

无效 4 1 0
有效 21 21 20
最优 5 8 10

A =[22222], T =

[21212]

V =[21112], V =

[11212]

4/1.8

4/1.8

无效 5 6 0
有效 17 16 21
最优 8 8 9

A =[22223], T =

[12222]

V =[11113], V =

[11112]

8/3.6

8/3.6

无效 0 0 0
有效 10 5 7
最优 20 25 23

A =[21212], T =

[23221]

V =[11211], V =

[11212]

5/2.7

5/2.7

无效 1 0 0
有效 17 17 15
最优 12 13 15

A =[22331], T =

[12222]

V =[11122], V =

[11121]

7/3.6

7/3.6

无效 21 11 0
有效 2 8 17
最优 7 11 13

A =[21331], T =

[12222]

V =[11121], V =

[11122]

6/3.15

6/3.15

无效 23 12 0
有效 2 7 17
最优 5 11 13
平均无效解/% 0.300 0.167 0
平均有效解/% 0.384 0.410 0.539
平均最优解/% 0.316 0.423 0.461

图3

伸缩路径优化的计算过程,λ和γ的PID自适应增量控制"

表4

三种算法效果对比(数据一)"

工 况

算 法

n=5, A =[21212]

T =[23221]

n=6, A =[212121]

T =[233221]

n=8, A =[21212121]

T =[23333221]

n=10, A =[2121212121]

T =[2333333221]

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s
排列组合

100%

/100%

0.012

100%

/100%

0.012

100%

/100%

0.036

100%

/100%

0.168
动态规划

100%

/100%

0.053

100%

/100%

0.059 - - - -
HNN

90%

/50%

0.519

90%

/40%

0.640

80%

/30%

0.641

80%

/10%

0.632

表5

三种算法效果对比(数据二)"

工 况

算 法

n=5, A =[22222]

T =[21212]

n=6, A =[222222]

T =[212121]

n=6, A =[22222222]

T =[21212121]

n=10, A =[2222222222]

T =[2121212121]

有效解比

/最优解比

t/s

有效解比

/最优解比

t/s 有效解比 t/s

有效解比

/最优解比

t/s
排列组合

100%

/100%

0.014

100%

/100%

0.014

100%

/100%

0.016

100%

/100%

0.035
动态规划

100%

/100%

0.053

100%

/100%

0.059 -- -- -- --
HNN

100%

/30%

0.634

90%

/80%

0.639

100%

/80%

0.635

90%

/60%

0.637
1 Zhan Chun-xin , Liu Quan , Guo Ji-mei , et al . Single-cylinder pin-type telescopic boom track optimized control method and control system[P]. WO/ 2011/038633, 2011-07-04.
2 毛艳, 成凯 . 一种高效的单缸插销式多级顺序伸缩路径优化方法[P]. 中国:CN 106744389B, 2018-07-17.
3 毛艳, 成凯 . 单缸插销式多级顺序伸缩路径优化方法 [P].中国:CN 106744386B, 2018-04-10.
4 郑飞 . 动态规划法在服装运输车辆路径优化中的应用 研究[J]. 物流科技, 2016, 39(2): 78-82.
Zheng Fei . Research on the application of dynamic programming method in the optimization of apparel vehicle routing[J]. Logistics Sci-Tech, 2016, 39(2): 78-82.
5 Wen U P , Lan K M , Shih H S . A review of hopfield neural networks for solving mathematical programming problems[J]. European Journal of Operational Research, 2009, 198(3): 675-687.
6 Hopfield J J . Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558.
7 Hopfield J J , Tank D W . ‘Neural’ computation of decisions in optimization problems[J]. Biological Cybernetics, 1985, 52(3): 141-152.
8 Wilson G V , Pawley G S . On the stability of the travelling salesman problem algorithm of Hopfield and tank[J]. Biological Cybernetics, 1988, 58(1): 63-70.
9 Kennedy M P , Chua L O . Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits & Systems, 1988, 35(5): 554-562.
10 Rodriguez-Vazquez A , Rueda A , Huertas J L , et al . Switched-capacitor neural networks for linear programming[J]. Electronics Letters, 2002, 24(8): 496-498.
11 Brandt R D , Yao W , Laub A J , et al . Alternative networks for solving the traveling salesman problem and the list-matching problem[C]∥International Conference on Neural Networks, San Diego, CA, USA, 1988: 333-340.
12 Protzel P W , Palumbo D L , Arras M K . Performance and fault-tolerance of neural networks for optimization[J]. IEEE Transactions on Neural Networks, 1993, 4(4): 600-614.
13 Shirazi B , Yih S . Critical analysis of applying hopfield neural net model to optimization problems[C]∥IEEE International Conference on Systems, Man and Cybernetics, Cambridge,MA,USA, 1989: 210-215.
14 Aiyer S V B , Niranjan M , Fallside F . A theoretical investigation into the performance of the Hopfield model[J]. IEEE Transactions on Neural Networks, 1990, 1(2): 204-215.
15 孙守宇, 郑君里 . Hopfield 网络求解 TSP的一种改进 算法和理论证明[J]. 电子学报, 1995, 23(1): 73-78.
Sun Shou-yu , Zheng Jun-li . A modified algorithm and theoretical analysis for hopfield network solving TSP[J]. Acta Electronica Sinica, 1995, 23(1): 73-78.
16 张军英, 许进, 保铮 . 神经网络求解TSP问题的理论分析及其改进[J]. 西安电子科技大学学报, 1996, (增刊1): 88-98.
Zhang Jun-ying , Xu Jin , Bao Zheng . Theoretical analysis and improvement of the neural network to solve the TSP problem[J]. Journal of Xidian University, 1996(Sup.1): 88-98.
17 Effati S , Jafarzadeh M . A new nonlinear neural network for solving a class of constrained parametric optimization problems[J]. Applied Mathematics & Computation, 2007, 186(1): 814-819.
18 Lemonge A C C , Barbosa H J C , Bernardino H S . Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization[J]. Engineering Computations, 2015, 32(8): 2182-2215.
19 Schoenauer M , Michalewicz Z . Boundary operators for constrained optimization problems[C]∥Baeck T, ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322-329.
20 Wang Y , Cai Z , Guo G , et al . Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007: 37(3): 560-575.
[1] 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976.
[2] 谢志江,王昆,皮阳军,吴小勇,郭映位. 新的6⁃PSS型并联机构正向运动学求解方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1977-1985.
[3] 曹恩国,刘坤,吉硕,孙震源,徐洪伟,骆星吉. 减重站起康复训练系统机械结构设计与优化[J]. 吉林大学学报(工学版), 2019, 49(5): 1558-1566.
[4] 李俊烨,刘洋,卢慧,孟文卿,杨兆军,张心明. 基于分子动力学的磨粒微切削单晶铁数值分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1567-1574.
[5] 张艳芹,冯雅楠,孔鹏睿,于晓东,孔祥滨. 基于热油携带的静压支承油膜温度场及试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1203-1211.
[6] 杨成,赵永胜,刘志峰,蔡力钢. 基于多尺度理论的栓接结合部动力学建模[J]. 吉林大学学报(工学版), 2019, 49(4): 1212-1220.
[7] 王家序,倪小康,韩彦峰,向果,肖科. 轴向往复运动下微槽轴承混合润滑数值模型[J]. 吉林大学学报(工学版), 2019, 49(3): 888-896.
[8] 王兴野,张进秋,李国强,彭志召. 惯性质量对齿轮齿条式作动器阻尼特性的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 881-887.
[9] 刘坤,吉硕,孙震源,徐洪伟,刘勇,赵静霞. 多功能坐站辅助型如厕轮椅机械结构设计与优化[J]. 吉林大学学报(工学版), 2019, 49(3): 872-880.
[10] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[11] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[12] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[13] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[14] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[15] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!