吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1953-1958.doi: 10.13229/j.cnki.jdxbgxb20200596
• 车辆工程·机械工程 • 上一篇
田晓超1,2(),王海刚1,2,王虎1,2,王志聪1,2,赵剑2,杨志刚3(),吴越3
Xiao-chao TIAN1,2(),Hai-gang WANG1,2,Hu WANG1,2,Zhi-cong WANG1,2,Jian ZHAO2,Zhi-gang YANG3(),Yue WU3
摘要:
为了提高压电材料的发电量和发电效率,设计了一种悬臂式压电振子宽频发电装置。首先,对单个压电振子进行电压输出和相频特性分析,得出影响电压输出的影响因素。然后,对双压电振子整流后串/并联进行电压输出特性分析,当两压电振子串/并联整流后,输出的电压为两个压电振子输出电压的较大值且频宽增大。最后,对4个压电振子进行发电实验测试。结果表明,当输出电压为30 V时,单个压电振子的有效发电频宽约为10 Hz左右,经整流后串/并联的4个压电振子串联有效发电频率为44.5~121.3 Hz,宽度约为77 Hz,有效提高了发电频宽,该装置可应用在狭窄空间自适应供电。
中图分类号:
1 | 曾平,刘艳涛,吴博达,等. 一种新型压电式无线发射装置[J]. 吉林大学学报:工学版,2006,36(): 78-82. |
Zeng Ping, Liu Yan-tao, Wu Bo-da, et al. A novel wireless electropult powered by piezoelectricity[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(Sup.2): 78-82. | |
2 | 吴博达,鄂世举,杨志刚,等. 压电驱动与控制技术的发展与应用[J]. 机械工程学报,2003,39(10): 79-85. |
Wu Bo-da, Shi-ju E, Yang Zhi-gang, et al. Development and application of piezoelectric actuation and control[J]. Journal of Mechanical Engineering, 2003, 39(10): 79-85. | |
3 | Lewandowski B E, Kilgore K L, Gustafson K J. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power[J]. Annals of Biomedical Engineering, 2007, 35(4): 631-641. |
4 | Roundy S, Leland E S, Baker J. Improving power output for vibration-based energy scavengers[J]. IEEE Pervasive Computing, 2005, 4(1): 28-36. |
5 | Allameh S M, Akogwu O, Collinson M, et al. Piezoelectric generators for biomedical and dental applications: effects of cyclic loading[J]. Journal of Materials Science Materials in Medicine, 2007, 18(1): 39-45. |
6 | Ferrari M, Ferrari V, Guizzetti M, et al. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems[J]. Sensors and Actuators A Physical, 2008, 142(1): 329-335. |
7 | Aktakka E E, Kim H, Najafi K. Energy scavenging from insect flight[J]. Journal of Micromechanics and Microengineering, 2011, 21(9):No.095016. |
8 | Kymissis J, Kendall C, Paradiso J A, et al. Parasitic power harvesting in shoes[C]∥Digest of Papers. Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 1998: 132-139. |
9 | Lefeuvre E, Badel A, Richard C, et al. Energy harvesting using piezoelectric materials: case of random vibrations[J]. Journal of Electroceramics, 2007, 19(4): 349-355. |
10 | Kim C, Iii D L, Wu C C, et al. Piezoelectric rotary actuator driven devices and applications[J]. Ferroelec trics, 2002, 273(1): 59-64. |
11 | Minazara E, Vasic D, Costa F, et al. Piezoelectric diaphragm for vibration energy harvesting[J]. Ultrasonics, 2006, 44(Sup.1): e699-e703. |
12 | Roundy S, Leland E S, Baker J. Improving power output for vibration-based energy scavengers[J]. IEEE Pervasive Computing, 2005, 4(1): 28-36. |
13 | 闫世伟,杨志刚,菅新乐. 压电式胎压报警器供电装置的发电特性[J]. 吉林大学学报:工学版,2010,40(5): 1268-1272. |
Yan Shi-wei, Yang Zhi-gang, Jian Xin-le. Power performance of a piezoelectric generator for tire pressure monitoring sensor[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(5): 1268-1272. | |
14 | Yayla S, Aya S, Oru M. A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids[J]. Renewable Energy, 2020, 157: 1243-1253. |
15 | 程光明,庞建志,唐可洪,等. 压电陶瓷发电能力测试系统的研制[J]. 吉林大学学报:工学版,2007,37(2): 367-371. |
Cheng Guang-ming, Pang Jian-zhi, Tang Ke-hong, et al. Development of measuring system for electricity generating capacity of piezoelectric ceramics[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2): 367-371. | |
16 | 单小彪,袁江波,谢涛,等. Cymbal压电发电机系统[J]. 吉林大学学报:工学版,2011,41(5): 1331-1334. |
Shan Xiao-biao, Yuan Jiang-bo, Xie Tao, et al. Cymbal piezoelectric generator system[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1331-1334. | |
17 | 唐可洪,阚君武,任玉,等. 压电发电装置的功率分析与试验[J]. 吉林大学学报:工学版,2009,39(6): 1550-1553. |
Tang Ke-hong, Kan Jun-wu, Ren Yu, et al. Power analysis and test of piezoelectric generator[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1550-1553. | |
18 | 刘行尚. 用于胎压报警器多晶片压电自供电装置的设计与试验[D]. 长春:吉林大学机械与航空航天工程学院,2015. |
Liu Xing-shang. Design and experiment of multi-chip piezoelectric self-powered device in tire pressure monitoring system[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2015. |
[1] | 胡晶,李聪,张邦成,乔晓利,张心明,周笑平. 考虑离心膨胀的双级串联轴承油膜刚度和阻尼[J]. 吉林大学学报(工学版), 2021, 51(5): 1601-1611. |
[2] | 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650. |
[3] | 陈魏,雷雨龙,李兴忠,付尧,扈建龙,侯利国. 低速工况下渐开线圆柱直齿轮齿面粘着磨损计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1628-1634. |
[4] | 刁延松,郭荡,屠康,焦圣伦,刘芸,刘秀丽. 新型异形钢管混凝土柱⁃钢梁节点抗震性能试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1724-1733. |
[5] | 李晓韬,任金鹏,李晓旭,杨航. 双压电振子反相模态驱动的直线驱动器机理[J]. 吉林大学学报(工学版), 2021, 51(2): 468-471. |
[6] | 侯才生,刘涛,郭李先. 一种新型变壁厚涡旋型线的构建理论[J]. 吉林大学学报(工学版), 2020, 50(5): 1627-1634. |
[7] | 程功,肖科,王家序,蒲伟,韩彦峰. 混合润滑状态下齿轮接触刚度[J]. 吉林大学学报(工学版), 2020, 50(2): 494-503. |
[8] | 毛艳,成凯. 基于Hopfield神经网络的单缸插销式伸缩臂伸缩路径优化[J]. 吉林大学学报(工学版), 2020, 50(1): 53-65. |
[9] | 郭震,于红英,滑忠鑫,赵娣. 刚性折纸机构运动分析及折叠过程仿真[J]. 吉林大学学报(工学版), 2020, 50(1): 66-76. |
[10] | 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976. |
[11] | 谢志江,王昆,皮阳军,吴小勇,郭映位. 新的6⁃PSS型并联机构正向运动学求解方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1977-1985. |
[12] | 曹恩国,刘坤,吉硕,孙震源,徐洪伟,骆星吉. 减重站起康复训练系统机械结构设计与优化[J]. 吉林大学学报(工学版), 2019, 49(5): 1558-1566. |
[13] | 李俊烨,刘洋,卢慧,孟文卿,杨兆军,张心明. 基于分子动力学的磨粒微切削单晶铁数值分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1567-1574. |
[14] | 张艳芹,冯雅楠,孔鹏睿,于晓东,孔祥滨. 基于热油携带的静压支承油膜温度场及试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1203-1211. |
[15] | 杨成,赵永胜,刘志峰,蔡力钢. 基于多尺度理论的栓接结合部动力学建模[J]. 吉林大学学报(工学版), 2019, 49(4): 1212-1220. |
|