吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1094-1104.doi: 10.13229/j.cnki.jdxbgxb.20210849

• 交通运输工程·土木工程 • 上一篇    

基于数字图像相关技术的钢筋混凝土梁裂缝试验

熊二刚(),巩忠文,罗佳明,范团结   

  1. 长安大学 建筑工程学院,西安 710061
  • 收稿日期:2021-08-30 出版日期:2023-04-01 发布日期:2023-04-20
  • 作者简介:熊二刚(1980-),男,教授,博士.研究方向:混凝土结构基本理论.E-mail:x-e-g@163.com
  • 基金资助:
    国家自然科学基金项目(51808046);陕西省重点研发计划项目(2021SF-461);陕西省自然科学基金项目(2020JQ-917);中央高校高新技术研究项目(S202052008036)

Experiment on cracks in reinforced concrete beams based on digital image correlation technology

Er-gang XIONG(),Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN   

  1. School of Civil Engineering,Chang′an University,Xi′an 710061,China
  • Received:2021-08-30 Online:2023-04-01 Published:2023-04-20

摘要:

为探讨剪跨比对钢筋混凝土梁裂缝萌发和发展的影响,根据我国规范,设计了一组剪跨比分别为4.0、3.0、2.5、2.0的钢筋混凝土梁,利用数字图像相关(DIC)技术捕捉钢筋混凝土梁构件在荷载作用下裂缝萌发及发展的全过程,重现了钢筋混凝土梁在各级荷载作用下裂缝的分布及其宽度,并将试验结果与各国规范公式的计算结果进行对比。结果表明:DIC技术是一种较好的试验观测手段;裂缝的分布与剪跨比有着十分重要的联系,试验梁的宽度较大裂缝主要分布在纯弯段;同时,在纯弯段范围内裂缝的位置及宽度近乎均匀分布。这与各国混凝土结构设计规范中裂缝计算公式的建立依据基本一致。

关键词: 结构工程, DIC技术, 钢筋混凝土梁, 裂缝, 剪跨比

Abstract:

In order to investigate the influence of shear span ratio on the initiation and propagation of cracks in reinforced concrete beam, according to Code for Design of Concrete Structures, a group of reinforced concrete beams with shear span ratios of 4.0, 3.0, 2.5 and 2.0 were designed. Through the digital image correlation (Digital image correlation, DIC) technology, the whole process of crack initiation and evolution was captured for the reinforced concrete beam components under the monotonic loading. The distribution and width of the cracks in RC beams were reproduced in different loading levels. The test results are compared with the calculated values by the use of major design codes. The results show that the DIC technology is a realistic test observation method; the distribution of cracks has a very important relationship with the shear span ratio, and the larger cracks of the test beam are mainly distributed in the pure bending section. At the same time, the position and width of the cracks are almost evenly distributed within the pure bending section. This is basically consistent with the crack calculation formula given in major design codes.

Key words: structural engineering, DIC technology, reinforced concrete beam, crack, shear-span ratio

中图分类号: 

  • TU375.1

图1

梁配筋图"

图2

DIC装置示意图"

图3

加载装置示意图"

图4

各荷载下梁挠度测量值对比"

图5

荷载-挠度曲线对比"

图6

通过表面应变观察到的裂缝发展"

表1

开裂荷载、裂缝数量、裂缝长度的分析结果汇总"

试件 编号开裂荷载/kN裂缝长度1/mm裂缝数量2破坏形式
A55391.5625弯曲破坏
B55333.7524弯曲破坏
C85369.6927弯曲破坏
D90348.8021弯曲破坏

图7

裂缝宽度提取示意图"

图8

裂缝位置及宽度信息"

图9

试验梁弯矩值与裂缝宽度的关系"

表2

开裂荷载规范计算值和试验值比较"

试件试验值/kN规范计算值/kN试验值/理论值
ACIEurocode2CSAGBACIEurocode2CSAGB
A5539.6134.5819.1733.521.381.592.861.64
B5552.8246.1025.5644.701.041.192.151.23
C8563.3955.3230.6753.641.341.532.771.58
D9079.2369.1638.3467.051.131.302.341.34

表3

平均裂缝间距规范计算值和试验值比较"

试件试验值/mm规范计算值/mm试验值/理论值
EC2?92EC2?04MC?90GB?10EC2?92EC2?04MC?90GB?10
A151.8084.60164.2396.13128.911.790.921.571.17
B178.752.111.081.851.38
C193.372.281.172.011.50
D155.691.840.941.611.20

图10

裂缝宽度规范计算值和试验值比较"

1 Shih M H, Sung W P. Application of digital image correlation method for analyzing crack variation of reinforced concrete beams[J]. Sadhana, 2013, 38(4): 723-741.
2 Fayyad T M, Lees J M. Experimental investigation of crack propagation and crack branching in lightly reinforced concrete beams using digital image correlation[J]. Engineering Fracture Mechanics, 2017, 182: 487-505.
3 赵亚军,窦远明,崔立杰. 基于DIC方法研究钢筋混凝土裂缝扩展规律分析[J]. 混凝土,2017, 38(5): 1-4.
Zhao Ya-jun, Dou Yuan-ming, Cui Li-jie. Investigation of the reinforced concrete crack propagation law on the DIC method[J]. Concrete, 2017, 38(5): 1-4.
4 Golewski G L. Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method[J]. Measurement, 2019, 135: 96-105.
5 Li D, Huang P, Chen Z, et al. Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology[J]. Engineering Fracture Mechanics, 2020, 235: No.107166.
6 范团结. 基于DIC技术RC梁裂缝的试验及数值模拟研究[D]. 西安:长安大学建筑工程学院, 2020.
Fan Tuan-jie. Experimental and numerical simulation of cracks in RC beams based on DIC technology[D]. Xi'an: School of Civil Engineering and Architecture, Chang'an University, 2020.
7 徐少波,顾国庆,于小娟,等. 基于数字图像相关的力学测试系统设计与应用[J]. 盐城工学院学报: 自然科学版,2018, 31(4): 69-72.
Xu Shao-bo, Gu Guo-qing, Yu Xiao-juan, et al. Design and application of mechanical testing system based on digital image correlation[J]. Journal of Yancheng Institute of Technology(Natural Science Edition), 2018, 31(4): 69-72.
8 Yamaguchi I, Yokota M, Ida T. Monitoring of paint drying process by digital speckle correlation[J]. Optical review, 2007, 14(6): 362-364.
9 Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1981, 21(3): 427-431.
10 崔新男,汪旭光,王尹军,等. 爆炸加载下混凝土表面的裂纹扩展[J]. 爆炸与冲击,2020, 40(5): 25-35.
Cui Xin-nan, Wang Xu-guang, Wang Yin-jun, et al. External crack propagation of concrete surface under explosive loading[J]. Explosion and Shock Waves, 2020, 40(5): 25-35.
11 Fayyad T M, Lees J M. Application of digital image correlation to reinforced concrete fracture[J]. Procedia Materials Science, 2014, 3: 1585-1590.
12 Alam S Y, Loukil A, Grondin F, et al. Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete[J]. Engineering Fracture Mechanics, 2015, 143: 17-31.
13 . 混凝土结构设计规范 [S].
14 ACI 318―95. Building code requirement for structural concrete and commentary [S].
15 EN 1992-1-1 : 2004. Eurocode 2: design for concrete structures-part 1:general rules and rules for buildings [S].
16 CSA A23.3-04. Design of concrete structures [S].
17 EN 1992-1-1 : 1992. Eurocode 2: design for concrete structures-part 1:general rules and rules for buildings [S].
18 MC90 C. Comite euro-international du beton-federation international de la pre-contrainte (CEB-FIP), model code 90 for concrete structures [S].
19 . Structural use of concrete [S].
20 TC 162 -TDF R. Test and design methods for steel fibre reinforced concrete[J]. Materials and Structures, 2003, 36(262): 560-567.
[1] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[2] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[3] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[4] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[5] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[6] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[7] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[8] 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351.
[9] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[10] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[11] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[12] 惠迎新,孙晓荣,王红雨,高晨. 预制T梁早期水化热温度效应及梁端开裂机理[J]. 吉林大学学报(工学版), 2021, 51(5): 1734-1741.
[13] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
[14] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[15] 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!