吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1765-1772.doi: 10.13229/j.cnki.jdxbgxb.20221508

• 交通运输工程·土木工程 • 上一篇    

基于车辆脉冲响应的路面不平度识别方法

张青霞1(),侯吉林2(),安新好2,胡晓阳3,段忠东3   

  1. 1.大连民族大学 土木工程学院,辽宁 大连 116600
    2.大连理工大学 建设工程学部,辽宁 大连 116024
    3.哈尔滨工业大学(深圳) 土木与环境工程学院,广东 深圳 518055
  • 收稿日期:2022-11-25 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 侯吉林 E-mail:zhangqingxia@dlnu.edu.cn;houjilin@dlut.edu.cn
  • 作者简介:张青霞(1981-),女,教授,博士.研究方向:结构健康监测.E-mail:zhangqingxia@dlnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51878118);辽宁省教育厅项目(LJKZ0031);中国-中东欧国家高校联合教育项目(2022206)

Road roughness identification method based on vehicle impulse response

Qing-xia ZHANG1(),Ji-lin HOU2(),Xin-hao AN2,Xiao-yang HU3,Zhong-dong DUAN3   

  1. 1.School of Civil Engineering,Dalian Minzu University,Dalian 116600,China
    2.Department of Construction Engineering,Dalian University of Technology,Dalian 116024,China
    3.School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen 518055,China
  • Received:2022-11-25 Online:2023-06-01 Published:2023-07-23
  • Contact: Ji-lin HOU E-mail:zhangqingxia@dlnu.edu.cn;houjilin@dlut.edu.cn

摘要:

基于车辆脉冲响应,提出了利用车辆动态响应识别路面不平度的方法。首先,以路面不平度为输入,推导了基于脉冲响应函数的车辆响应计算公式。然后,将脉冲响应函数离散为矩阵的形式,建立了基于脉冲响应矩阵的不平度识别线性方程。同时,考虑前、后轮所经历的路程存在一段重合的特点,构建了前、后轮位置相关性矩阵,降低了待识别的未知数数目。接着,鉴于不平度一般为连续函数的特点,利用荷载形函数的思想,进一步降低待识别的未知数数目,并提高对噪声的鲁棒性,实现路面不平度的实时识别。最后,利用数值仿真和试验验证了本文方法的有效性。

关键词: 道路工程, 脉冲响应, 车辆动态响应, 路面不平度识别, 形函数

Abstract:

Based on the vehicle impulse response, a method of pavement roughness identification using vehicle dynamic response was proposed. First, road roughness was taken as input and the equation of vehicle response computation based on the impulse response function was derived. Then, the impulse response function was discretized into the matrix form and a linear equation for road roughness identification was established based on the impulse response matrix. Furthermore, considering that the front and rear wheels experienced the same road roughness, the correlation matrix of the front and rear wheels was constructed, which can decrease the computational work of road roughness identification. Then, take the advantage of the continuity of the road roughness, the load shape function was used to approximate it and thus not only the unknown identification number was further reduced but also the robustness of method to noise was improved, which achieved the real time identification. At last, the effectiveness of the proposed method was verified by numerical simulation and field test.

Key words: road engineering, impulse response, vehicle dynamic response, road roughness identification, shape function

中图分类号: 

  • U416

图1

半车辆模型受力图"

图 2

前后轮位移相关性"

图3

不平度曲线的形函数"

表1

车辆固有频率"

模态阶数1234
频率/Hz1.2812.02812.40214.932

图4

路面不平度曲线"

图5

模拟的车辆加速度响应"

图6

识别的路面不平度"

图7

识别误差"

图8

利用理论无噪声响应的识别结果"

图9

利用含噪响应的识别结果"

图10

利用降噪后响应识别的不平度"

表2

不同方法的识别误差 (cm)"

方法理论响应含噪声响应去噪响应
直接法0.0121.5270.140
形函数法0.0690.1370.139

表3

采用含噪声响应得到的识别误差 (response with noise)"

噪声水平/%51525355070
误差/cm0.0870.1960.3200.4470.6380.895

图11

形函数法利用含噪响应识别的路面不平度"

图12

路面不平度在线识别结果"

图13

车辆测量响应"

图14

测试区域内路面不平度的在线识别结果"

1 秦旻. 基于平整度的沥青路面使用寿命预估研究[D]. 重庆: 重庆交通大学交通运输学院, 2010.
Qin Min. Research on service life prediction of asphalt pavement based on roughness[D]. Chongqing: School of Transportation, Chongqing Jiaotong University, 2010.
2 李杰, 郭文翠, 赵旗, 等. 基于车辆响应的路面不平度识别方法[J]. 吉林大学学报:工学版, 2019, 49(6): 1810-1817.
Li Jie, Guo Wen-cui, Zhao Qi, et al. Road roughness identification based on vehicle responses[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1810-1817.
3 周宗淘, 张跃. 高速公路沥青路面平整度检测技术的应用研究[J]. 黑龙江交通科技, 2020, 43(2): 30-31.
Zhou Zong-tao, Zhang Yue. Research on the application of asphalt pavement flatness detection technology of expressway[J]. Heilongjiang Communications Technology, 2020, 43(2): 30-31.
4 贺慧涛. 激光检测仪在沥青路面平整度检测中的应用[J]. 交通世界, 2022(26): 52-54.
He Hui-tao. Application of laser detector in asphalt pavement flatness detection[J]. Transportation World, 2022(26): 52-54.
5 潘敏. 路面激光平整度检测设备在工程中的应用[J]. 运输经理世界, 2022(7): 131-133.
Pan Min. Application of laser pavement smoothness test equipment in engineering[J]. Transport Manager World, 2022(7): 131-133.
6 Cremean L B, Murray R M. Model-based estimation of off-highway road geometry using single-axis LADAR and inertial sensing[C]∥Proceedings 2006 IEEE International Conference on Robotics and Automation, Orlando, America, 2006: 1661-1666.
7 Zhao B Y, Nagayama T, Toyoda M, et al. Vehicle model calibration in the frequency domain and its application to large-scale IRI estimation[J]. Journal of Disaster Research, 2017, 12(3): 446-455.
8 Liu X D, Wang H X, Shan Y C, et al. Construction of road roughness in left and right wheel paths based on PSD and coherence function[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 668-677.
9 Zhao B, Nagayama T, Xue K. Road profile estimation, and its numerical and experimental validation, by smartphone measurement of the dynamic responses of an ordinary vehicle[J]. Journal of Sound and Vibration, 2019,457: 92-117.
10 Kang S, Kim J, Kim G. Road roughness estimation based on discrete Kalman filter with unknown input[J]. Vehicle System Dynamics, 2019, 57(10): 1530-1544.
11 Amiri A K, Bucher C. Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement[J]. Journal of Sound and Vibration, 2015, 344: 101-113.
12 Huang D W, Gao Y D, Yu X Y, et al. The Feature extraction of impact response and load reconstruction based on impulse response theory[J]. Machines, 2022, 10(7): No. 524.
13 Liu J, Sun X S, Han X, et al. A novel computational inverse technique for load identification using the shape function method of moving least square fitting[J]. Computers & Structures, 2014,144: 127-137.
14 Zhong J W, Xiang Z R, Li C. Synchronized assessment of bridge structural damage and moving force via truncated load shape function[J]. Applied Sciences-Basel, 2022, 12(2): No. 691.
15 李世武, 姚雪萍, 孙文财, 等. 体现悬架特性的车辆载荷状态监测技术[J]. 吉林大学学报:工学版, 2014, 44(2): 335-342.
Li Shi-wu, Yao Xue-ping, Sun Wen-cai, et al. Vehicle load state monitoring technology reflecting suspension characteristics[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 335-342.
16 侯吉林, 欧进萍. 基于局部脉冲响应的约束子结构修正法[J]. 工程力学, 2009, 26(11): 23-30.
Hou Ji-lin, Jin-ping Ou. Isolated substructure model updating method based on local impulse response[J]. Engineering Mechanics, 2009, 26(11): 23-30.
17 Pan C D, Yu L, Liu H L. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization[J]. Smart Materials and Structures, 2017, 26(8): No. 085041.
18 张青霞, 段忠东, Jankowski Lukasz, 等. 基于形函数方法快速识别结构动态荷载的试验验证[J]. 振动与冲击, 2011, 30(9): 98-102, 154.
Zhang Qing-xia, Duan Zhong-dong, Jankowski Lukasz, et al. Experimental verification of fast identification of structural dynamic loads based on shape function method[J]. Journal of Vibration and Shock, 2011, 30(9): 98-102, 154.
19 侯吉林, 欧进萍, Jankowski Lukasz. 约束子结构损伤识别的时序方法研究与试验[J]. 工程力学, 2013, 30(4): 129-135.
Hou Ji-lin, Jin-ping Ou, Jankowski Lukasz. Research and experiment of time series method for damage identification of constrained substructure[J]. Engineering Mechanics, 2013, 30(4): 129-135.
20 Zhang Q X, Hou J L, Hu X Y, et al. Vehicle parameter identification and road roughness estimation using vehicle responses measured in field tests[J]. Measurement, 2022, 199: No.111348.
[1] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[2] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[6] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[7] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[8] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[9] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[10] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[11] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[12] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[13] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[14] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[15] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!