吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (2): 346-355.doi: 10.13229/j.cnki.jdxbgxb.20220364

• 车辆工程·机械工程 • 上一篇    

高速列车转向架区域气动噪声源识别与分析

王毅刚1,2(),王玉鹏1,2,张昊1,2,赵思安1,2   

  1. 1.同济大学上海地面交通工具风洞中心,上海 201804
    2.上海市地面交通工具空气动力与热环境模拟重点实验室,上海 201804
  • 收稿日期:2022-04-05 出版日期:2024-02-01 发布日期:2024-03-29
  • 作者简介:王毅刚(1964-),男,教授,博士.研究方向:气动噪声,噪声与振动控制.E-mail:08024@tongji.edu.cn
  • 基金资助:
    高铁联合基金项目(U1834201)

Identification and analysis of aerodynamic noise sources in the bogie area of high⁃speed trains

Yi-gang WANG1,2(),Yu-peng WANG1,2,Hao ZHANG1,2,Si-an ZHAO1,2   

  1. 1.Shanghai Automotive Wind Tunnel Center,Tongji University,Shanghai 201804,China
    2.Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems,Shanghai 201804,China
  • Received:2022-04-05 Online:2024-02-01 Published:2024-03-29

摘要:

高速列车转向架区域为其主要气动噪声源之一,迄今为止较难描述高速列车气动噪声源特征,鲜有有效的声源识别方法。利用高速列车转向架区域以偶极子声源为主的声源特征,将气动声源等效为无数个球形声源的集合,基于声辐射与声源,声源与流场物理量之间的关系,结合流体数值仿真,建立高速列车偶极子声源识别方法,并聚焦头车转向架区域进行声源识别。同时,以涡声理论为基础,建立偶极子声源强度和流场多物理量的关系,分析流场产生声源的本质。研究表明,偶极子声源集中的位置多为迎风侧气流与壁面发生激烈作用的位置,气流与壁面发生撞击与分离是产生偶极子声源的主要原因,且在该区域涡量的变化对偶极声源强度影响最大,在不同区域,不同方向的涡量分量在起主导作用。

关键词: 车辆工程, 高速列车, 转向架, 偶极子声源, 数值仿真, 涡声方程

Abstract:

The bogie area of high-speed trains is one of main sources for aerodynamic noise. So far, it is difficult to describe the characteristics of aerodynamic noise sources of high-speed trains, there are few effective sound source identification methods. Using the characteristics of the sound source dominated by dipole sound sources in the high-speed train bogie area, the aerodynamic sound source is equivalent to a collection of countless spherical sound sources. Based on the relationship between sound radiation and sound source, sound source and flow field physical quantities according to the relationship, combined with the fluid numerical simulation, a method for identifying the sound source of the high-speed train dipole was established, and the sound source was identified by focusing on the bogie area of the lead car. At the same time, based on the vortex sound theory, the relationship between the intensity of the dipole sound source and the multi-physics of the flow field was established, and the essence of the sound source generated by the flow field was analyzed. The research shows that the concentrated position of the dipole sound source is mostly the position where the windward side airflow and the wall surface strongly interact, and the collision and separation of the airflow and the wall surface are the main reasons for the generation of the dipole sound source, and the change of vorticity in this area is dual. The intensity of the polar sound source has the greatest influence, and in different regions, the vorticity components in different directions play a leading role.

Key words: vehicle engineering, high-speed train, bogie, dipole sound source, numerical simulation, vortex sound equation

中图分类号: 

  • V221.3

图1

振动球源空间坐标系"

图2

声源表面质点速度分解"

图3

高速列车模型及计算域"

图4

高速列车模型尺寸"

图5

高速列车模型及测点位置"

图6

传声器测点布置"

图7

测点2实验与仿真1/3倍频程频率声压级对比"

图8

测点3实验与仿真1/3倍频程频率声压级对比"

图9

头车表面区域偶极子声源特征"

图10

前车轮流线"

图11

前车轮流线提取"

图12

提取流线流场物理量变化"

图13

轮轴端部流线"

图14

轮轴端部流线提取"

图15

提取流线流场物理量变化"

图16

排障器前沿流线"

图17

排障器前沿流线提取"

图18

提取流线流场物理量变化"

图19

前轮流线涡量及各方向分量变化"

图20

轮轴端部流线涡量及各方向分量变化"

图21

排障器前沿流线涡量及各方向分量变化"

1 Lighthill M J. On sound generated aerodynamically. I. General theory[J]. Mathematical and Physical Sciences, 1952, 211: 564-587.
2 Lighthill M J. On sound generated aerodynamically. II. Turbulence as a source of sound[J]. Mathematical and Physical Sciences, 1954, 222: 1-32.
3 Curle N. The Influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society A, 1955, 231:505-514.
4 Williams J E F. Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transcations of the Roval Society A, 1969, 264: 321342.
5 Williams J E F, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1969, 264:321-342.
6 Powell A. Theory of vortex sound[J]. The Journal of the Acoustical Society of America, 1964, 36(1):177.
7 Howe M S. Theory of Vortex Sound[M]. Cambridge University Press, 2003.
8 张曙光.350 km/h高速列车噪声机理、声源识别及控制[J].中国铁道科学,2009,30(1):86-90.
Zhang Shu-guang. Noise mechanism, sound source identification and control of 350 km/h high-speed trains[J]. China Railway Science, 2009,30(1):86-90.
9 Mellet C, Létourneaux F, Poisson F, et al. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound & Vibration, 2006, 293(3-5):535-546.
10 张卫华. 高速列车顶层设计指标研究[J]. 铁道学报, 2012(9):15-19.
Zhang Wei-hua. Research on top-level design index of high-speed train[J]. Journal of Railways, 2012(9):15-19.
11 高阳,王毅刚,王金田,等.声学风洞中的高速列车模型气动噪声试验研究[J].声学技术, 2013,32(6):506-510.
Gao Yang, Wang Yi-gang, Wang Jin-tian, et al. Experimental study on aerodynamic noise of high-speed train model in acoustic wind tunnel[J]. Acoustic Technology, 2013, 32(6): 506-510.
12 黄莎. 高速列车车外气动噪声数值模拟研究[D]. 湖南: 中南大学交通运输工程学院,2009.
Huang Sha. Research on numerical simulation of outside aerodynamic noise of high-speed train[D]. Hunan: School of Traffic & Transportation Engineering, Central South University, 2009.
13 张亚东, 张继业, 张亮, 等 高速列车动车转向 架气动噪声数值分析 [J]. 西南交通大学学报,2016, 51(5):870-877.
Zhang Ya-dong, Zhang Ji-ye, Zhang Liang, et al. Numerical analysis of aerodynamic noise of high-speed train bogies[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 870-877.
14 李辉,肖新标,金学松.基于简化模型的头车转向架气动噪声特性研究 [J].机械工程学报,2016,52(8):152-161.
Li Hui, Xiao Xin-biao, Jin Xue-song. Research on the aerodynamic noise characteristics of the lead car bogie based on a simplified model[J].Chinese Journal of Mechanical Engineering,2016,52(8):152-161.
15 张强. 气动声学基础[M]. 北京:国防工业出版社, 2012.
[1] 邓小林,杨馥模,覃善甘. 新型仿竹六边形梯度层级多胞管耐撞性对比分析[J]. 吉林大学学报(工学版), 2024, 54(2): 333-345.
[2] 李旭东,王新宇,田程,张新峰,牛治慧,赵志强. 基于用户关联的车辆耐久性载荷谱编制[J]. 吉林大学学报(工学版), 2024, 54(1): 66-75.
[3] 王铁,李旭东,田程,赵宏伟. 基于多轴载荷投影构建轮辋双轴疲劳损伤模型[J]. 吉林大学学报(工学版), 2024, 54(1): 99-104.
[4] 吴骁,史文库,郭年程,赵燕燕,陈志勇,李鑫鹏,孙卓,刘健. 基于Ease off的准双曲面齿轮多目标优化[J]. 吉林大学学报(工学版), 2024, 54(1): 76-85.
[5] 陈兆玮,蒲前华. 弹性车轮对大跨斜拉桥车桥耦合振动的抑制特性[J]. 吉林大学学报(工学版), 2023, 53(9): 2519-2532.
[6] 刘平义,李晓婷,高偌霖,李海涛,魏文军,王亚. 车辆侧倾驱动机构设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2185-2192.
[7] 黄学劲,钟锦星,路京雨,赵霁,肖伟,袁新枚. 基于用户画像的电动汽车充电负荷预测方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2193-2200.
[8] 张树培,夏明悦,张玮,陈钊,陈义祥. 考虑非线性刚度的间隙球铰碰撞动力学建模与仿真[J]. 吉林大学学报(工学版), 2023, 53(8): 2227-2235.
[9] 陈辉,邵亚军. 基于惯性基准多传感器耦合的路面谱测量方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2254-2262.
[10] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[11] 陈鑫,张冠宸,赵康明,王佳宁,杨立飞,司徒德蓉. 搭接焊缝对铝合金焊接结构轻量化设计的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1282-1288.
[12] 张勇,毛凤朝,刘水长,王青妤,潘神功,曾广胜. 基于Laplacian算法的汽车外流场畸变网格优化[J]. 吉林大学学报(工学版), 2023, 53(5): 1289-1296.
[13] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[14] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[15] 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!