吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1049-1055.doi: 10.13229/j.cnki.jdxbgxb201504004

• • 上一篇    下一篇

电液复合制动系统踏板感觉及其影响因素

刘杨1, 2, 孙泽昌1, 2, 冀文斌1, 2   

  1. 1.同济大学 新能源汽车工程中心,上海 201804;
    2.同济大学 汽车学院,上海 201804
  • 收稿日期:2013-10-25 出版日期:2015-07-01 发布日期:2015-07-01
  • 通讯作者: 孙泽昌(1953),男,教授,博士生导师.研究方向:电液复合制动技术及电池成组与管理技术.
  • 作者简介:刘杨(1986),男,博士研究生.研究方向:电液复合制动技术及整车能耗分析.E-mail:021lytj@tongji.edu.cn
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2011CB711202)

Brake pedal feeling and its influencing factors for electro-hydraulic brake system

LIU Yang1, 2, SUN Ze-chang1, 2, JI Wen-bin1, 2   

  1. 1.Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;
    2.School of Automotive Studies, Tongji University, Shanghai 201804, China
  • Received:2013-10-25 Online:2015-07-01 Published:2015-07-01

摘要: 针对采用一体式制动主缸开发的电液复合制动系统,分析了系统正常和失效模式下踏板力的传递路径,研究了不同模式下踏板感觉及其影响因素。设计了组合弹簧式踏板感觉模拟器,并利用AMESim建立了系统不同工作模式的简化模型;仿真分析了活塞阻尼系数、推杆回位弹簧预紧力、电磁阀最大通流面积和助力比等参数对踏板力-行程曲线的影响;台架试验表明,正常模式和失效模式下踏板力-行程滞回损失分别为11.5%和15.3%,制动踏板特性满足设计需求。

关键词: 车辆工程, 电液复合制动系统, 踏板感觉, 滞回损失

Abstract: For the proposed electro-hydraulic brake system based on an integrated master cylinder, the pedal force transmission paths were analyzed under normal and failure operation modes. The pedal feeling and its influence factors were investigated. A pedal feeling simulator was designed with cluster springs, and simplified models under different operation modes were established using AMESim. The parameters, such as the piston damping coefficient, which affect the pedal force-stroke curve, the pedal rod return spring preload force, solenoid valve flow area and booster ratio, were studied by simulation. Bench test results show that the brake pedal characteristics could meet the design requirements, and the pedal force-stroke hysteresis losses are 11.5% for normal mode and 15.3% for failure mode, respectively.

Key words: vehicle engineering, electro-hydraulic brake system, pedal feel, hysteresis loss

中图分类号: 

  • U463.5
[1] Aoki Y, Suzuki K, Nakano H, et al. Development of hydraulic servo brake system for cooperative control with regenerative brake[C]∥SAE Paper,2007-01-0868.
[2] Von A C, Karner J. Brake system for hybrid and electric vehicles[C]∥SAE Paper,2009-01-1217.
[3] Zehnder J, Kanetkar S, Osterday C. Variable rate pedal feel emulator designs for a brake-by-wire system[C]∥SAE Paper,1999-01-0481.
[4] Nakamura E, Soga M, Sakai A, et al. Development of electronically controlled brake system for hybrid vehicle[C]∥SAE Paper,2002-01-0300.
[5] 孙泽昌,王猛. 采用一体式制动主缸总成的电液复合制动系统[P].中国:201210054374.2,2012-07-18.
[6] 王聪. 混合动力轿车制动踏板行程模拟器及控制策略研究[D].长春:吉林大学汽车工程学院,2012. Wang Cong. Study on brake pedal stroke simulator and control strategy for hybrid electric car[D].Changchun: College of Automotive Engineering, Jilin University,2012.
[7] 丰田自动车株式会社. 用于产生制动踏板阻力的设备[P].中国: 200810007052.6,2008-01-25.
[8] Ohtani Y, Innami T, Obata T, et al. Development of an electrically-driven intelligent brake unit[C]∥SAE Paper,2011-01-0572.
[9] 宋传学,郑竹安,靳立强,等. 踏板行程模拟器在线控制动系统中的应用[J]. 江苏大学学报:自然科学版,2013, 34(1): 17-22. Song Chuan-xue, Zheng Zhu-an, Jin Li-qiang, et al. Application of pedal stroke simulator in brake-by-wire-system[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(1): 17-22.
[10] 金智林,施瑞康,赵又群,等. 联合AMESim/Matlab的汽车制动踏板模拟器动态性能分析[J]. 重庆理工大学学报:自然科学版,2011,25(1): 1-4. Jin Zhi-lin, Shi Rui-kang, Zhao You-qun, et al. Dynamic analysis of vehicle brake pedal emulator based on AMESim/Matlab[J]. Journal of Chongqing University of Technology(Natural Science),2011,25(1): 1-4.
[11] Koizumi N. Effect of phenolic brake piston tribology on brake pedal feel[C]∥SAE Paper,2013-01-2051.
[12] Antanaitis D, Riefe M, Sanford J. Automotive brake hose fluid consumption characteristics and its effects on brake system pedal feel[C]∥SAE Paper,2010-01-0082.
[13] Keerthi M, Shete S, Jadhav N, et al. Optimization of brake pedal feel and performance for dual air over hydraulic system on light commercial vehicles[C]∥SAE Paper,2010-01-1888.
[14] Lee S, Kim S. Characterization and development of the ideal pedal force, pedal travel and response time in the brake system for the translation of the voice of the customer to engineering specifications[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2010, 224(11):1433-1450.
[15] Tretsiak D, Kliauzovich S, Augsburg K, et al. Research in hydraulic brake components and operational factors influencing the hysteresis losses[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2008,222(9):1633-1645.
[16] Shyrokau B, Wang D, Augsburg K, et al. Vehicle dynamics with brake hysteresis[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2013,227(2):139-150.
[17] 孟爱红, 王治中, 宋健, 等. 汽车ESP液压控制单元关键部件建模与系统仿真[J]. 农业机械学报,2013,44(2): 1-5. Meng Ai-hong, Wang Zhi-zhong, Song Jian, et al. Critical component modeling and system simulation of hydraulic control unit of automotive electronic stability program[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(2): 1-5.
[18] 李静,张建,杨坤,等. 电子机械制动汽车稳定性控制电控单元软件开发及硬件在环试验[J]. 吉林大学学报:工学版,2011,41(4):893-897. Li Jing, Zhang Jian, Yang Kun, et al. Development of ECU software and hardware-in- the-loop simulation for stability control of vehicle with electro-mechanical brake[J]. Journal o f Jilin University (Engineering and Technology Edition),2011,41(4):893-897.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!