吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 718-724.doi: 10.13229/j.cnki.jdxbgxb201603006

• 论文 • 上一篇    下一篇

一体式电液复合制动系统制动力协调控制及试验

刘杨1, 2, 孙泽昌1, 2, 王猛1, 2   

  1. 1.同济大学 新能源汽车工程中心,上海 201804;
    2.同济大学 汽车学院,上海 201804
  • 收稿日期:2014-10-16 出版日期:2016-06-20 发布日期:2016-06-20
  • 通讯作者: 孙泽昌(1953-),男,教授,博士生导师.研究方向:电液复合制动技术及电池成组与管理技术.E-mail:sunzechang@tongji.edu.cn
  • 作者简介:刘杨(1986),男,博士研究生.研究方向:电液复合制动技术及整车能耗分析.E-mail:021lytj@tongji.edu.cn
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2011CB711202).

Brake force cooperative control and test for integrated electro-hydraulic brake system

LIU Yang1, 2, SUN Ze-chang1, 2, WANG Meng1, 2   

  1. 1.Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;
    2.School of Automotive Studies, Tongji University, Shanghai 201804, China
  • Received:2014-10-16 Online:2016-06-20 Published:2016-06-20

摘要: 提出了一体式电液复合制动系统结构,研究了非紧急/紧急制动工况的制动力协调控制策略。分析了采用一体式主缸的制动系统结构原理,提出了制动力基本控制逻辑。研究了非紧急制动工况下的再生制动力和液压制动力的分配策略;分析了触发防抱死制动系统的两种情形,提出了电液复合制动到纯液压的防抱死制动协调控制策略。利用xPC target搭建了硬件在环仿真试验台架,对非紧急/紧急制动工况进行了试验。试验结果表明,所提出的一体式电液复合制动系统和制动力控制策略能够满足能量回收和与防抱死制动协调控制的需求。

关键词: 车辆工程, 电液复合制动系统, 再生制动, 防抱死制动, 协调控制

Abstract: An integrated electro-hydraulic brake system was proposed, and the coordinated control strategy of regenerative braking force and hydraulic braking force was studied under non-emergency/emergency braking conditions. The principle of the electric-hydraulic brake system with an integrated master cylinder was analyzed, and the basic control strategy for the two braking conditions was proposed. Brake force distribution strategy between regenerative braking force and hydraulic braking force under non-emergency condition was investigated. Two cases triggering the anti-lock braking system were presented. Cooperative control between electric-hydraulic brake and anti-lock brake using hydraulic braking force was studied with simplified control logic. Hardware-in-the-loop test bench was built using xPC target, and non-emergency/emergency braking tests were carried out. Test results show that the proposed integrated electro-hydraulic brake system and braking force cooperative control strategy can meet the braking energy recovery and coordination with the anti-lock brake control needs.

Key words: automotive engineering, electro-hydraulic brake system, regenerative brake, anti-lock braking system, cooperative control

中图分类号: 

  • U463.5
[1] 中国汽车工程学会. 世界汽车技术发展跟踪研究•2008[M].北京:北京理工大学出版社,2008:210-223.
[2] 刘杨,孙泽昌,王猛,等. 非解耦式与解耦式电液复合制动系统及其评价[J]. 华南理工大学学报:自然科学版,2014,42(4): 131-136.
Liu Yang, Sun Ze-chang,Wang Meng, et al. Investigation and evaluation of coupled /decoupled electro-hydraulic braking system[J]. Journal of South China University of Technology (Natural Science Edition),2014,42(4):131-136.
[3] Park M, Kim S, Yang L, et al. Development of the control logic of electronically controlled hydraulic brake system for hybrid vehicle[C]∥SAE Paper, 2009-01-1215.
[4] 杨阳,杨洋,秦大同,等. 基于ABS硬件的HEV/EV再生制动压力协调控制系统[P]. 中国,201110132456.X,2012.
[5] Von Albrichsfeld C, Karner J. Brake system for hybrid and electric vehicles[C]∥SAE Paper, 2009-01-1217.
[6] Ohtani Y, Innami T, Obata T, et al. Development of an electrically-driven intelligent brake unit[C]∥SAE Paper, 2011-01-0572.
[7] 卢东斌,欧阳明高,谷靖,等. 电动汽车永磁同步电动机最优制动能量回馈控制[J]. 中国电动机工程学报,2013,33(3):83-91.
Lu Dong-bin,Ouyang Ming-gao,Gu Jing,et al. Optimal regenerative braking control for permanent magnet synchronous motors in electric vehicles[J]. Proceedings of the CSEE,2013,33(3):83-91.
[8] 郑宏宇,许文凯,刘宗宇,等. 四轮独立驱动电动汽车再生制动控制策略[J]. 吉林大学学报:工学版,2013,43(3):590-594.
Zheng Hong-yu, Xu Wen-kai, Liu Zong-yu,et al. Control strategy for regenerative braking for four-wheel-drive electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(3):590-594.
[9] 周磊,罗禹贡,李克强,等. 电动汽车回馈制动与防抱死制动集成控制[J]. 清华大学学报:自然科学版,2009,49(5):728-732.
Zhou Lei, Luo Yu-gong,Li Ke-qiang, et al. Braking control of electric vehicles while coordinating regenerative and anti-lock brakes[J]. Journal of Tsinghua University(Science and Technology),2009,49(5):728-732.
[10] 初亮,吕廷秀,张永生,等. 混合动力轿车再生制动与防抱死集成控制系统[P]. 中国:200710055687.9,2007.
[11] 陈庆樟,何仁,商高高. 基于 ABS 的汽车能量再生制动集成控制研究[J]. 汽车工程,2008,30(4): 301-304.
Chen Qing-zhang,He Ren,Shang Gao-gao. A research on integrated control of vehicle regenerative braking based on ABS[J]. Automotive Engineering,2008,30(4):301-304.
[12] Rosenberger M, Uhlig R, Koch T, et al. Combining regenerative braking and anti-lock braking for enhanced braking performance and efficiency[C]∥SAE Paper,2012-01-0234.
[13] Oleksowicz S A, Burnham K J, Barber P, et al. Investigation of regenerative and Anti-lock Braking interaction[J]. International Journal of Automotive Technology,2013,14(4):641-650.
[14] 麦莉,张继红,宗长富,等. 基于电液制动系统的车辆稳定性控制[J]. 吉林大学学报:工学版,2010,40(3):607-613.
Mai Li, Zhang Ji-hong, Zong Chang-fu, et al. Vehicle stability control based on electronic hydraulic brake system[J]. Journal of Jilin University (Engineering and Technology Edition),2010,40(3):607-613.
[15] Liu Yang,Sun Ze-chang,Ji Wen-bin. Development of composite brake pedal stroke simulator for electro-hydraulic braking system[C]∥SAE Paper,2014-01-0117.
[16] 王猛,孙泽昌,卓桂荣,等. 电动汽车制动能量回收最大化影响因素分析[J]. 同济大学学报:自然科学版,2012,40(4):583-588.
Wang Meng,Sun Ze-chang,Zhuo Gui-rong, et al. Maximum braking energy recovery of electric vehicles and its influencing factors[J]. Journal of Tongji University(Natural Science),2012,40(4):583-588.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!