吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1556-1562.doi: 10.13229/j.cnki.jdxbgxb20180320
闫冬梅1, 钟辉1, 任丽莉2, 王若琳3, 李红梅1
YAN Dong-mei1, ZHONG Hui1, REN Li-li2, WANG Ruo-lin3, LI Hong-mei1
摘要: 研究了给定区间时变时滞线性系统的稳定性问题。通过构造一个具有三重积分项的新的Lyaounov-Krasovskii泛函,利用一个最新提出的基于自由矩阵的积分不等式,得到了新的保守性更小的保证系统稳定的充分条件。最后,通过2个实例验证了所提出的方法比现有方法具有更小的保守性。
中图分类号:
[1] Sun J, Liu G P, Chen J, et al.Networked predictive control for Hammerstein systems[J]. Asian Journal of Control, 2011, 13: 265-272. [2] Sun J, Chen J.Networked predictive control for systems with unknown or partially known delay[J]. IET Control Theory Appl,2014,8(18):2282-2288. [3] 李学军,陈虹,于树友.基于时滞系统的无偏H∞滤波[J].吉林大学学报:工学版,2009,39(2):473-479. Li Xue-jun, Chen Hong, Yu Shu-you.Unbiased H∞filtering for time delay system[J].Journal of Jilin University(Engineering and Technology Edition),2009,39(2):473-479. [4] Fridman E, Shaked U.Delay-dependent stability and H∞ control: constant and time-varying delays[J].International Journal of Control, 2003, 76: 48-60. [5] Fridman E, Shaked U.An improved stabilization method for linear systems with time-delay[J]. IEEE Transactions on Automatic Control, 2002, 47: 1931-1937. [6] He Y, Wang Q G, Lin C, et al.Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[J].International Journal of Robust and Nonlinear Control, 2005,15:923-933. [7] He Y, Wang Q G, Xie L, et al.Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43: 371-376. [8] He Y, Wang Q G, Xie L, et al.Further improvement of free-weighting matrices technique for systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2007,52:293-299. [9] He Y, Wu M, She J H, et al.Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems & Control Letters, 2004, 51: 57-65. [10] He Y, Wu M, She J H, et al.New delay-dependent stability criteria for robust stability of time-varying delay systems[J].Automatica, 2004, 40: 1435-1439. [11] Sun J, Liu G P, Chen J, et al.Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J].Automatica, 2010, 46: 466-470. [12] Sun J, Han Q L, Chen J, et al.Less conservative stability criteria for linear systems with interval time-varying delays[J].International Journal of Robust and Nonlinear Control, 2015, 25: 475-485. [13] Gu K.Integral inequality in the stability problem of time-delay systems[C]∥Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000,3:2805-2810. [14] Seuret A, Gouaisbaut F.Wirtinger-based integral inequality: application to time-delay systems[J].Automatica, 2013, 49: 2860-2866. [15] Park P, Ko J W.Stability and robust stability for systems with a time-varying delay[J].Automatica, 2007, 43: 1855-1858. [16] Park P, Ko J W, Jeong C.Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47: 235-238. [17] Gu K, Han Q L, Luo A C J, et al. Discretized lyapunov functional for systems with distributed delay and piecewise constant coefficients[J].International Journal of Control, 2001, 74: 737-744. [18] Gouaisbaut F, Peaucelle D.Delay-dependent robust stability of time delay systems[C]∥Proceedings of IFAC Symposium on Robust Control Design, Toulouse, France, 2006,5:453-458. [19] Han Q L.New stability criteria for linear systems with interval time-varying delay[J]. Automatica, 2008, 44: 2680-2685. [20] Hui Jun-jun, Zhang He-xin, Kong Xiang-yu, et al.On improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J].International Journal of Automation and Computing,2015,12(1):102-108. [21] Fridman E.Tutorial on Lyapunov-based methods for time-delay systems[J]. European Journal of Control,2014,20(6):271-283. [22] Zeng H B, He Y, Wu M, et al.Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015, 60(10): 2768-2772. [23] Sun J, Chen J.A survey on Lyapunov-based methods for stability of linear time-delay systems[J]. Frontiers of Computer Science,2017,11(4):555-567. [24] Liu K, Fridman E, Johansson K H, et al.Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons[J]. Automatica, 2016, 69: 222-231. [25] Kim J H.Further improvement of Jensen inequality and application to stability of time-delayed systems[J]. Automatica, 2016,64:121-125. |
[1] | 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H∞性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819. |
[2] | 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826. |
[3] | 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843. |
[4] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[5] | 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190. |
[6] | 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198. |
[7] | 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852. |
[8] | 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858. |
[9] | 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525. |
[10] | 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244. |
[11] | 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875. |
[12] | 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885. |
[13] | 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567. |
[14] | 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143. |
[15] | 胡云峰, 顾万里, 梁瑜, 杜乐, 于树友, 陈虹. 混合动力汽车启停非线性控制器设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216. |
|