吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 764-772.doi: 10.13229/j.cnki.jdxbgxb20200887

• 车辆工程·机械工程 • 上一篇    

基于改进海鸥算法的磁流变减振器模型辨识

史文库(),张曙光,张友坤(),陈志勇,江逸飞,林彬斌   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2020-07-12 出版日期:2022-04-01 发布日期:2022-04-20
  • 通讯作者: 张友坤 E-mail:shiwk@jlu.edu.cn;zhangyk@jlu.edu.cn
  • 作者简介:史文库(1960-),男,教授,博士生导师 . 研究方向:汽车振动噪声分析与控制 .E-mail:shiwk@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0106203)

Parameter identification of magnetorheological damper model with modified seagull optimization algorithm

Wen-ku SHI(),Shu-guang ZHANG,You-kun ZHANG(),Zhi-yong CHEN,Yi-fei JIANG,Bin-bin LIN   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-07-12 Online:2022-04-01 Published:2022-04-20
  • Contact: You-kun ZHANG E-mail:shiwk@jlu.edu.cn;zhangyk@jlu.edu.cn

摘要:

提出了一种磁流变减振器Bouc-Wen滞回模型参数的识别方法。基于新型元启发优化算法(海鸥算法),对描述磁流变减振器非线性力学特性的模型参数进行拟合识别,通过引入基于透镜折射成像的反向学习模型,改善了海鸥算法陷入局部最优的问题。该参数辨识方法计算结果准确,计算过程简单,计算结果鲁棒性强。通过对多工况下磁流变减振器力学特性试验数据进行拟合计算,建立了模型参数与控制电流之间的关系,进而建立了包含控制电流的磁流变减振器多工况通用模型,为磁流变半主动座椅悬架控制系统搭建提供了准确的力学模型。

关键词: 车辆工程, 半主动悬架, 磁流变减振器, 参数辨识, 元启发式智能算法

Abstract:

In this paper, a method is presented to identify parameters of Bouc-Wen hysteresis model of magnetorheological damper. Based on the new meta-heuristic algorithm—Seagull optimization algorithm, the model parameters describing the nonlinear mechanical properties of the magnetorheological damper were fitted and identified. The opposition-based learning model based on the principle of refraction was introduced to improve the problem of falling into local optimal of the seagull optimization algorithm. The calculation results of the parameter identification method are accurate, simple and robust. The relationship between the model parameters and the control current is established by fitting and calculating the test data of the magnetorheological damper under different operating conditions. A general model of the magnetorheological damper including the control current is established and provided an accurate mechanical model for semi-active seat suspension control system.

Key words: vehicle engineering, semi-active suspension, magnetorheological damper, parameter identification, meta-heuristic intelligent algorithm

中图分类号: 

  • U461.4

图1

试验台架实物图"

表1

磁流变减振器力学特性试验工况"

频率/Hz幅值/mm
5101520
0.5
1
1.5
2
2.5
3
3.5
4
4.5-
5-
6--
7--
9---

图2

不同工况下磁流变减振器力学特性对比"

图3

Bouc-Wen模型"

图4

海鸥的迁徙和捕食行为示意图"

图5

透镜成像示意图"

图6

两种算法计算结果对比"

图7

Bouc-Wen模型参数α、γ、c0变化规律"

图8

Bouc-Wen模型参数β、k0、A及x0变化规律"

图9

不同电流下Bouc-Wen模型力学特性"

图10

不同激励特性下Bouc-Wen模型力学特性"

图11

单自由度座椅悬架模型"

表2

座椅悬架参数"

参数名称数值
Ms/kg座椅重量67
ks/(N·m-1悬架刚度78 000
cs/(N·m·s-1被动减振器阻尼系数942
Fd磁流变减振器阻尼力-
xs座椅上板位移-
xb激励位移-

图12

基于Bouc-Went模型的半主动座椅悬架振动控制分析"

1 Zong L H, Gong X L, Xuan S H, et al. Semi-active H infinity control of high-speed railway vehicle suspension with magnetorheological dampers[J]. Vehicle System Dynamics, 2013, 51(5): 600-626.
2 Mai V N, Yoon D S, Choi S B, et al. Explicit model predictive control of semi-active suspension systems with magneto-rheological dampers subject to input constraints[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(10): 1157-1170.
3 Du X M, Yu M, Fu J, et al. Experimental study on shock control of a vehicle semi-active suspension with magneto-rheological damper[J]. Smart Materials and Structures, 2020, 29(7): No.074002.
4 Phu D X, Shin D K, Choi S B. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper[J]. Smart Materials and Structures, 2015, 24(8): No. 085012.
5 Bai X X, Chen P, Qian L J. Principle and validation of modified hysteretic models for magnetorheological dampers[J]. Smart Materials and Structures, 2015, 24(8): No. 085014.
6 Wang W X, Hua X G, Wang X Y, et al. Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system[J]. Structural Control and Health Monitoring, 2019, 26(1): No.e2280.
7 Zhang C, Wang L X. Dynamic models for magnetorheological dampers and its feedback linearization[J]. Advanced Materials Research, 2009, 79-82: 1205-1208.
8 左曙光, 毛钰, 吴旭东, 等. 磁流变减振器高频硬化特性建模及优化[J]. 振动与冲击, 2016, 35(10): 120-125, 150.
Zuo Shu-guang, Mao Yu, Wu Xu-dong, et al. Modelling and optimization of high frequency hardening characteristics of magneto rheological damper [J]. Journal of Vibration and Shock, 2016, 35(10): 120-125, 150.
9 彭虎, 张进秋, 刘义乐, 等. 基于改进双Sigmoid模型的磁流变减振器力学建模研究[J].振动与冲击, 2019, 38(15): 216-222.
Peng Hu, Zhang Jin-qiu, Liu Yi-le,et al. MR damper's modeling based on improved dual-sigmoid model [J]. Journal of Vibration and Shock, 2019, 38(15): 216-222.
10 薛兵, 杜永昌, 刘源, 等. 基于机理的磁流变减震器滞回特性魔术公式模型[J]. 振动工程学报, 2017, 30(5): 774-780.
Xue Bing, Du Yong-chang, Liu Yuan, et al. Magic formula model of hysteresis characteristics of magnetorheological damper based on mechanism[J]. Journal of Vibration and Shock, 2017, 30(5): 774-780.
11 Charalampakis A E, Koumousis V K. Identification of bouc–wen hysteretic systems by a hybrid evolutionary algorithm[J]. Journal of Sound and Vibration, 2008, 314(3-5): 571-585.
12 Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization[J]. Sensors and Actuators A: Physical, 2006, 132(2): 441-451.
13 郑玲, 牛伯瑶, 李以农, 等. 基于遗传算法的汽车磁流变减振器多目标优化[J]. 汽车工程, 2016, 38(7): 871-877.
Zheng Ling, Niu Bo-yao, Li Yi-nong, et al. Multi-objective optimization of vehicle MR damper based on genetic algorithm[J]. Automotive Engineering, 2016, 38(7): 871-877.
14 刘永强, 杨绍普, 廖英英. 一种磁流变减震器模型参数识别新方法[J]. 机械工程学报, 2018, 54(6): 62-68.
Liu Yong-qiang, Yang Shao-pu, Liao Ying-ying. A new method of parameters identification for magnetorheological damper model[J]. Journal of Mechanical Engineering, 2018, 54(6): 62-68.
15 Zeinali M, Mazlan S A, Fatah A Y A, et al. A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system[J]. Smart Materials and Structures, 2013, 22(12): No. 125013.
16 王戡, 郑玲, 刘非. 基于广义回归神经网络的磁流变减振器模型辨识[J]. 汽车工程, 2013, 35(7): 619-623, 634.
Wang Kan, Zheng Ling, Liu Fei. Model identification of mr damper based on generalized regression neural network[J]. Automotive Engineering, 2013, 35(7): 619-623, 634.
17 Spencer B F, Dyke S J. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123(3): 230-237.
18 Dhiman G, Kumar V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196.
19 Cao Y, Li Y Q, Zhang G, et al. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm[J]. Energy Reports, 2019, 5: 1616-1625.
20 喻飞,李元香,魏波, 等.透镜成像反学习策略在粒子群算法中的应用[J]. 电子学报, 2014, 42(2): 230-235.
Yu Fei, Li Yuan-xiang, Wei Bo, et al. The application of a novel obl based on lens imaging principle in PSO[J]. Acta Electronica Sinica, 2014, 42(2): 230-235.
[1] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
[2] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[3] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[4] 庄蔚敏,陈沈,王楠. 温度对车身钢铝胶铆连接结构热应力变化的影响[J]. 吉林大学学报(工学版), 2022, 52(1): 70-78.
[5] 陈剑斌,周宋泽,费峰永,陈永龙,凌国平. 过盈量及滚花方式对装配式凸轮轴压装失效的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1959-1966.
[6] 胡兴军,张靖龙,罗雨霏,辛俐,李胜,胡金蕊,兰巍. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1933-1942.
[7] 罗勇,韦永恒,黄欢,肖人杰,任淋,崔环宇. 驾驶员意图识别的P2.5插混构型双离合器起步控制[J]. 吉林大学学报(工学版), 2021, 51(5): 1575-1582.
[8] 曾小华,宋美洁,宋大凤,王越. 基于车联网信息的公交客车行驶工况数据处理方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1692-1699.
[9] 马超,高云凯,刘哲,段月星,田林雳. 骨架式车身多材料及梁截面形状和尺寸优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1583-1592.
[10] 兰凤崇,李继文,陈吉清. 面向动态场景复合深度学习与并行计算的DG-SLAM算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1437-1446.
[11] 杨建,夏琦,周海超,王国林. 修正胎体弦轮廓载重子午线轮胎的降噪机理[J]. 吉林大学学报(工学版), 2021, 51(4): 1198-1203.
[12] 龙江启,向锦涛,俞平,王骏骋. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版), 2021, 51(4): 1230-1240.
[13] 陈鑫,于贵申,张彪,潘凯旋,杨立飞. 搅拌摩擦点焊接头拉伸-剪切行为的等效建模[J]. 吉林大学学报(工学版), 2021, 51(4): 1190-1197.
[14] 宋大凤,杨丽丽,曾小华,王星琦,梁伟智,杨南南. 基于行驶工况合成的混合动力汽车电池寿命优化[J]. 吉林大学学报(工学版), 2021, 51(3): 781-791.
[15] 何仁,赵晓聪,杨奕彬,王建强. 基于驾驶人风险响应机制的人机共驾模型[J]. 吉林大学学报(工学版), 2021, 51(3): 799-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!