吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2698-2705.doi: 10.13229/j.cnki.jdxbgxb20210328

• 计算机科学与技术 • 上一篇    

边缘计算场景中基于粒子群优化算法的计算卸载

朱思峰1(),赵明阳1,柴争义2()   

  1. 1.天津城建大学 计算机与信息工程学院,天津 300384
    2.天津工业大学 计算机科学与技术学院,天津 300387
  • 收稿日期:2021-04-15 出版日期:2022-11-01 发布日期:2022-11-16
  • 通讯作者: 柴争义 E-mail:zhusifeng@163.com;tgu_chaizhengyi@163.com
  • 作者简介:朱思峰(1975-),男,教授,博士.研究方向:边缘计算,人工智能算法及应用.E-mail:zhusifeng@163.com
  • 基金资助:
    国家自然科学基金项目(61972456)

Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene

Si-feng ZHU1(),Ming-yang ZHAO1,Zheng-yi CHAI2()   

  1. 1.School of Computer and Information Engineering,Tianjin Chengjian University,Tianjin 300384,China
    2.School of Computer Science & Technology,Tiangong University,Tianjin 300387,China
  • Received:2021-04-15 Online:2022-11-01 Published:2022-11-16
  • Contact: Zheng-yi CHAI E-mail:zhusifeng@163.com;tgu_chaizhengyi@163.com

摘要:

为满足边缘计算场境下用户终端设备对密集型任务处理的低时延和低能耗需求,本文设计了时延模型、能耗模型以及卸载优化模型,给出了一种基于改进型粒子群优化算法的卸载方案,并用实验验证了本文方案的优良性能。首先,对PSO进行了一些改进,提出了改进型的粒子群优化算法(UPSO);其次,将UPSO与遗传算法(Genetic algorithm,GA)结合,提出了一种融合遗传算法的改进型粒子群优化算法(GA-UPSO)求解单用户多任务场景下的卸载决策问题。在Matlab上进行的仿真实验结果表明:本文卸载方案在时延和能耗方面均优于基于遗传算法的卸载方案和基于标准粒子群优化算法的卸载方案。

关键词: 边缘计算, 计算卸载, 时延, 能耗, 遗传算法, 粒子群优化算法

Abstract:

In order to meet the requirements of low delay and low energy consumption of user terminal equipment for intensive task processing in edge computing environment, the time delay model, energy consumption model and offloading optimization model were designed, and an offloading scheme based on improved particle swarm optimization algorithm was given, and the excellent performance of the proposed scheme was verified by experiments.Firstly, the PSO is improved and an improved particle swarm optimization (UPSO) algorithm is proposed. Secondly, by combining UPSO with Genetic algorithm (GA), an improved particle swarm optimization algorithm (GA-UPSO) is proposed to solve the unloading decision problem in the single-user multi-task scenario. The simulation results on Matlab show that the proposed offloading scheme is superior to the offloading scheme based on genetic algorithm and the offloading scheme based on standard particle swarm optimization algorithm in terms of time delay and energy consumption.

Key words: edge computing, computing offloading, time delay, energy consumption, genetic algorithm, particle swarm optimization algorithm

中图分类号: 

  • TP391

图1

系统场景"

图2

6个任务的编码实例"

表1

参数设置"

参数
B/MHz10~50
fj/GHz50~60
flc/GHz7
σ2/dBm10-9
PiD/dBm30~80
GA交叉概率pc0.8
GA变异概率pm0.05
c1c21.5
PSO惯性权重w0.8
算法迭代次数G50

图3

任务量增加对总时延的影响"

图4

任务量增加对总能耗的影响"

图5

MECS数量变化对系统时延的影响"

图6

MECS数量变化对能耗的影响"

图7

权重变化对系统时延的影响"

图8

权重变化对系统能耗的影响"

1 谢人超, 廉晓飞, 贾庆民, 等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39(11): 138-155.
Xie Ren-chao, Lian Xiao-fei, Jia Qing-min, et al. Survey on computation offloading in mobile edge computing[J]. Journal of Communications, 2018, 39(11): 138-155.
2 Khan A R, Othman M, Madani S A, et al. A survey of mobile cloud computing application models[J]. IEEE Communications Surveys & Tutorials, 2014, 16(1): 393-413.
3 施巍松, 张星洲, 王一帆, 等. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89.
Shi Wei-song, Zhang Xing-zhou, Wang Yi-fan, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89.
4 Nasir A, Zhang Y, Taherkordi A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465.
5 Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.
6 Bouet M, Conan V. Mobile edge computing resources optimization: a geo-clustering approach[J]. IEEE Transactions on Network and Service Management, 2018, 15(2): 787-796.
7 Carvalho G H S, Woungang I, Anpalagan A, et al. Analysis of joint parallelism in wireless and cloud domains on mobile edge computing over 5G systems[J]. Journal of Communications and Networks, 2018, 20(6): 565-577.
8 Tang L, He S B. Multi-user computation offloading in mobile edge computing: a behavioral perspective[J]. IEEE Network, 2018, 32(1): 48-53.
9 Wang F, Xu J, Wang X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 17(3): 1784-1797.
10 夏士超, 姚枝秀, 鲜永菊, 等. 移动边缘计算中分布式异构任务卸载算法[J]. 电子与信息学报, 2020, 42(12): 2891-2898.
Xia Shi-chao, Yao Zhi-xiu, Xian Yong-ju, et al. A distributed heterogeneous task offloading methodology for mobile edge computing[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2891-2898.
11 芦效峰, 廖钰盈, Pietro L, 等. 一种面向边缘计算的高效异步联邦学习机制[J]. 计算机研究与发展, 2020, 57(12): 2571-2582.
Lu Xiao-feng, Liao Yu-ying, Pietro L, et al. An asynchronous federated learning mechanism for edge network computing[J]. Journal of Computer Research and Development, 2020, 57(12): 2571-2582.
12 张海波, 栾秋季, 朱江, 等. 基于移动边缘计算的V2X任务卸载方案[J]. 电子与信息学报, 2018, 40(11): 2736-2743.
Zhang Hai-bo, Luan Qiu-ji, Zhu Jiang, et al. V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2736-2743.
13 孟浩, 霍如, 郭倩影, 等. 基于机器学习的MEC随机任务迁移算法[J]. 北京邮电大学学报, 2019, 42(2): 25-30.
Meng Hao, Huo Ru, Guo Qian-ying, et al. Machine learning-based stochastic task offloading algorithm in mobile-edge computing[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(2):25-30.
14 Wu Y, Li P Q, Ni K J, et al. Delay-minimization nonorthogonal multiple access enabled multi-user mobile edge computation offloading[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 392-407.
15 张志宏,刘传领.基于灰狼算法优化深度学习网络的网络流量预测[J].吉林大学学报:理学版,2021,59(3):619-626.
Zhang Zhi-hong, Liu Chuan-ling. Grey wolf algorithm to optimize network traffic prediction of deep learning network[J]. Journal of Jilin University(Science Edition), 2021,59(3):619-626.
16 王彦琦,张强,朱刘涛,等.基于改进鲸鱼优化算法的GBDT回归预测模型[J].吉林大学学报:理学版,2022,60(2):401-408.
Wang Yan-qi, Zhang Qiang, Zhu Liu-tao, et al. GBDT regression prediction model based on improved whale optimization algorithm[J]. Journal of Jilin University (Science Edition),2022,60(2):401-408.
17 赵鹏程,高尚,于洪梅.基于多智能体深度强化学习的空间众包任务分配[J].吉林大学学报:理学版,2022,60(2):321-331.
Zhao Peng-cheng, Gao Shang, Yu Hong-mei. Spatial crowdsourcing task assignment based on multi-agent deep reinforcement learning[J]. Journal of Jilin University(Science Edition), 2022,60(2):321-331.
18 王宏志, 姜方达, 周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报: 工学版, 2019, 49(4): 1363-1368.
Wang Hong-zhi, Jiang Fang-da, Zhou Ming-yue. Power allocation of cognitive radio system based on genetic particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
19 王出航,王雪,胡黄水,等.基于改进GA和信任感知的无线传感器网络安全分簇路由协议[J].吉林大学学报:理学版,2021,59(5):1237-1244.
Wang Chu-hang, Wang Xue, Hu Huang-shui, et al. Secure clustering routing protocol based on improved GA and trust-aware for wireless sensor networks[J]. Journal of Jilin University(Science Edition), 2021,59(5):1237-1244.
20 胡黄水,姚美琴,王亮,等.基于改进的AP和遗传算法的能量感知分簇路由协议[J].吉林大学学报:理学版,2021,59(6):1525-1531.
Hu Huang-shui, Yao Mei-qin, Wang Liang, et al. Energy aware clustering routing protocol based on improved AP and genetic algorithm[J]. Journal of Jilin University(Science Edition), 2021,59(6):1525-1531.
[1] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[2] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[3] 李雪梅,王春阳,刘雪莲,谢达. 基于SESTH的线性调频连续波激光雷达信号时延估计[J]. 吉林大学学报(工学版), 2022, 52(4): 950-958.
[4] 姜斌祥,姜彤彤,王永雷. 基于文化遗传算法的毒品检验区块链共识算法优化[J]. 吉林大学学报(工学版), 2022, 52(3): 684-692.
[5] 李翠玉,胡雅梦,康亚伟,张德良. 应用自适应遗传算法的电动汽车充放电协同调度[J]. 吉林大学学报(工学版), 2022, 52(11): 2508-2513.
[6] 陈传海,姚国祥,金桐彤,申桂香,于立娟,田海龙. 基于响应面与遗传算法的主轴系统动力学建模及参数修正[J]. 吉林大学学报(工学版), 2022, 52(10): 2278-2286.
[7] 冯建鑫,王强,王雅雷,胥彪. 基于改进量子遗传算法的超声电机模糊PID控制[J]. 吉林大学学报(工学版), 2021, 51(6): 1990-1996.
[8] 滕文龙,丛炳虎,商云坤,张予宸,白天. 基于MEA⁃BP神经网络的建筑能耗预测模型[J]. 吉林大学学报(工学版), 2021, 51(5): 1857-1865.
[9] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
[10] 何德峰,罗捷,舒晓翔. 自主网联车辆时滞反馈预测巡航控制[J]. 吉林大学学报(工学版), 2021, 51(1): 349-357.
[11] 贾洪飞,丁心茹,杨丽丽. 城市潮汐车道优化设计的双层规划模型[J]. 吉林大学学报(工学版), 2020, 50(2): 535-542.
[12] 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350.
[13] 金顺福,郄修尘,武海星,霍占强. 基于新型休眠模式的云虚拟机分簇调度策略及性能优化[J]. 吉林大学学报(工学版), 2020, 50(1): 237-246.
[14] 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976.
[15] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!