吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2916-2923.doi: 10.13229/j.cnki.jdxbgxb20220503
Xiang-jiu CHE(),Ying-jie YU,Quan-le LIU
摘要:
针对现有目标检测算法在医疗影像疾病检测中存在定位精度和分类准确率较低的问题,提出了一种基于动态加权Bagging集成学习的多目标检测方法。以胸部影像疾病检测为例,引入联合注意力(CA)模块增强区域感受野,提升弱学习器对目标区域的定位能力;使用动态加权Bagging集成学习方法,根据置信度赋予弱学习器投票权重,降低了模型方差,改善了泛化误差,提升了分类准确率。实验结果表明,在胸部影像疾病检测任务中,本文算法的平均检测精度达到41.9%,相较于YOLOv5原型提高了2.5%,同时G-mean提升了1.3%;将模型加权集成后,平均检测准确率达到81.06%,相较于原模型提升了1.58%,具有较高的定位精度和分类准确率。因此,本文算法可以更好地完成胸部影像疾病检测任务。
中图分类号:
1 | de Carvalho Filho A O, de Sampaio W B, Silva A C, et al. Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index[J]. Artificial Intelligence in Medicine, 2014, 60(3): 165-177. |
2 | Choi W J, Choi T S. Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 37-54. |
3 | Zhang Z, Zhang X, Lin X, et al. Ultrasonic diagnosis of breast nodules using modified faster R-CNN[J]. Ultrasonic Imaging, 2019, 41(6): 353-367. |
4 | Ramachandran S, George J, Skaria S, et al. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans[C]∥Medical Imaging 2018: Computer-Aided Diagnosis, Houston, Texas, USA, 2018, 10575: 347-355. |
5 | Johnson J M, Khoshgoftaar T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1):1-54. |
6 | 申彦, 朱玉全, 宋新平. 一种采用渐进学习模式的SBS-CLearning分类算法[J]. 江苏大学学报:自然科学版, 2018, 39(6): 696-703. |
Shen Yan, Zhu Yu-quan, Song Xin-ping. A classification learning algorithm of SBS-CLearning using step-by-step learning model[J]. Journal of Jiangsu University(Natural Science Edition), 2018, 39(6): 696-703. | |
7 | Kazemi Y, Mirroshandel S A. A novel method for predicting kidney stone type using ensemble learning[J]. Artificial intelligence in Medicine, 2018, 84:117-126. |
8 | Farahani F V, Ahmadi A, Zarandi M H F. Lung nodule diagnosis from CT images based on ensemble learning[C]∥2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Niagara Falls, ON, Canada, 2015:1-7. |
9 | Fitriyani N L, Syafrudin M, Alfian G, et al. Development of disease prediction model based on ensemble learning approach for diabetes and hypertension[J]. IEEE Access, 2019, 7:144777-144789. |
10 | Wang Yu-yan, Wang Du-juan, Geng Na, et al. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection[J]. Applied Soft Computing, 2019, 77: 188-204. |
11 | Zheng Hao, Zhang Yi-zhe, Yang Lin, et al. A new ensemble learning framework for 3D biomedical image segmentation[J]. AAAI Technical Track: Machine Learning, 2019, 33(1): 5909-5916. |
12 | Gao X Y, Amin A A, Shaban H H, et al. Improving the accuracy for analyzing heart diseases prediction based on the ensemble method[J]. Complexity, 2021, 2021:1-10. |
13 | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014:580-587. |
14 | Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015:1440-1448. |
15 | Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
16 | 牛杰, 钱堃, 卜雄洙. 基于YOLOv3算法和深度特征的地点识别方法[J]. 江苏大学学报:自然科学版, 2021, 42(6): 733-737. |
Niu Jie, Qian Kun, Bu Xiong-zhu. Place recognition method based on YOLOv3 and deep features[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 733-737. | |
17 | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016:779-788. |
18 | Nguyen H Q, Lam K, Le L T, et al. VinDr-CXR: an open dataset of chest X-rays with radiologist's annotations[J/OL].[2022-04-15]. file:∥/C:/Users/ADMINI~1/AppData/Local/Temp/MicrosoftEdgeDownloads/4fb2e789-21c9-43c9-b06b-d06266b169fb/s41597-022-01498 -w.pdf |
19 | 王进, 黄超, 王科, 等. 基于属性敏感卷积神经网络的行人属性分类[J]. 江苏大学学报:自然科学版, 2019, 40(4): 431-438. |
Wang Jin, Huang Chao, Wang Ke, et al. Pedestrian attribute classification based on label sensitive convolutional neural network[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(4): 431-438. | |
20 | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018:7132-7141. |
21 | Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[J] Lecture Notes in Computer Science, 2018,11211: 3-19. |
22 | Hou Qin-bin, Zhou Da-quan, Feng Jia-shi. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021:13713-13722. |
23 | 袁梅, 全太锋, 黄俊, 等. 基于卷积神经网络的烟雾检测[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(4): 620-629. |
Yuan Mei, Quan Tai-feng, Huang Jun, et al. Smoke detection based on convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(4): 620-629. | |
24 | Kubat M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection[C]∥Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, Tennessee, USA, 1997:179-186. |
25 | Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
[1] | 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575. |
[2] | 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592. |
[3] | 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487. |
[4] | 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583. |
[5] | 赵宏伟,张健荣,朱隽平,李海. 基于对比自监督学习的图像分类框架[J]. 吉林大学学报(工学版), 2022, 52(8): 1850-1856. |
[6] | 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888. |
[7] | 胡丹,孟新. 基于时变网格的对地观测卫星搜索海上船舶方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1896-1903. |
[8] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[9] | 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880. |
[10] | 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841. |
[11] | 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656. |
[12] | 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665. |
[13] | 康耀龙,冯丽露,张景安,陈富. 基于谱聚类的高维类别属性数据流离群点挖掘算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1422-1427. |
[14] | 王文军,余银峰. 考虑数据稀疏的知识图谱缺失连接自动补全算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1428-1433. |
[15] | 陈雪云,贝学宇,姚渠,金鑫. 基于G⁃UNet的多场景行人精确分割与检测[J]. 吉林大学学报(工学版), 2022, 52(4): 925-933. |
|