吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1773-1781.doi: 10.13229/j.cnki.jdxbgxb.20230069

• 交通运输工程·土木工程 • 上一篇    

泥石流作用下道路结构韧性分析及提升

薛志佳1(),王召阳1,张久鹏1(),晏长根1,许子凯1,张英立1,黄晓明2,马涛2   

  1. 1.长安大学 公路学院,西安 710064
    2.东南大学 交通学院,南京 211189
  • 收稿日期:2023-01-28 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 张久鹏 E-mail:xuegeneral@126.com;zhjiupeng@chd.edu.cn
  • 作者简介:薛志佳(1990-),男,副教授,博士.研究方向:公路岩土工程.E-mail:xuegeneral@126.com
  • 基金资助:
    国家重点研发计划项目(2021YFB2600602);国家自然科学基金青年基金项目(41902280);陕西省高校科协青年人才托举计划项目(20210422);中国博士后科学基金项目(2022M710486);陕西省自然科学基础研究计划项目(2023-JC-QN-0445);长安大学中央高校基本科研业务费项目(300102212101)

Toughness analysis and improvement of road structure under action of debris flow

Zhi-jia XUE1(),Zhao-yang WANG1,Jiu-peng ZHANG1(),Chang-gen YAN1,Zi-kai XU1,Ying-li ZHANG1,Xiao-ming Huang2,Tao Ma2   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.School of Transportation,Southeast University,Nanjing 211189,China
  • Received:2023-01-28 Online:2023-06-01 Published:2023-07-23
  • Contact: Jiu-peng ZHANG E-mail:xuegeneral@126.com;zhjiupeng@chd.edu.cn

摘要:

针对道路结构抗灾韧性研究的不足,提出了泥石流冲击和淤埋作用下的道路结构性能响应函数,通过分析泥石流防治特征和道路结构韧性特征对其进行求解,并用泥石流作用后道路结构性能的累积损失程度表征其安全韧性,构建了道路结构安全韧性理论模型。以甘肃省沙湾镇水峪沟泥石流为例,分析了水峪沟国道394 km+800 m处道路结构在自我恢复、灾中采取抵御措施、灾后应急处理3种情况下的韧性曲线和安全韧性。结果表明:未采取任何措施时,道路结构安全韧性值仅为63.92%;而对泥石流灾害采取应急处理后,道路结构应对灾害的能力提升至81.98%;对泥石流采取抵御措施后,道路结构应对灾害的能力进一步提升至85.76%,韧性得到了明显提升。本文研究成果量化了泥石流作用下道路结构的抵抗力和恢复力,可为提升泥石流作用下的道路结构韧性提供决策依据。

关键词: 交通运输系统工程, 道路结构, 韧性提升, 泥石流灾害, 抵御措施

Abstract:

Due to the deficiency of the study on the resilience of road structure, the response function of road structure performance under the impact and siltation of debris flow was proposed. And the response function was solved by analyzing the characteristics of debris flow protection and toughness of road structure. Furthermore, the cumulative loss degree of road structure performance after debris flow is used to characterize the safety toughness, and a theoretical model of road structure safety toughness is established. Taking Shuiyugou debris flow in Shawan Town, Gansu Province as an example, the toughness curve and safety toughness of road structure at 394 km+800 m of Shuiyugou National Road was analyzed. The results show that the safety toughness value of road structure is only 63.92% when no measures are taken. After taking the emergency treatment, the safety toughness value of road structure increased to 81.98%. After taking measures to resist debris flow, the ability of road structure to deal with disasters further increased to 85.76%, which significantly improved the toughness. The results quantified the resistance and resilience of road structure under the impact and siltation of debris flow and provided a decision basis for improving the toughness of road structure under the impact and siltation of debris flow.

Key words: engineering of communications and transportation system, road structure, toughness improvement, debris flow, defensive measures

中图分类号: 

  • U491

图1

以“稳”为主的综合治理方案"

图2

以“拦”为主的综合治理方案"

图3

以“排”为主的综合治理方案"

图4

道路结构韧性曲线"

表1

水峪沟国道394 km+800 m处的韧性分量"

时间/min韧性分量数值
t0=0惯性分量R01.1×107
t1=90抵抗韧性R1583.504
t2=9000恢复韧性R20.033

图5

水峪沟国道394 km+800 m处韧性曲线和安全韧性"

表2

应急处理后水峪沟国道394 km+800 m处韧性分量"

时间/min韧性分量数值
t0=0惯性分量R01.1×107
t1=90抵抗韧性R1583.504
t2=4410恢复韧性R21.396

图6

采取应急处理后水峪沟国道394 km+800 m处韧性曲线"

图7

3种不同情况下水峪沟国道394 km+800 m处安全韧性"

图8

采取应急处理与灾中采取抵御措施韧性曲线对比"

1 刘坤. 我国基础设施整体水平跨越式提升[N]. 光明日报, 2022-09-27.
2 黄琦, 谢涛, 陈欢欢, 等. 2020年8月甘肃武都群发泥石流基本特征及减灾建议[J]. 公路, 2022, 67(9): 30-37.
Huang Qi, Xie Tao, Chen Huan-huan, et al. Basic characteristics of mass debris flows in wudu, gansu province in august 2020 and suggestions for disaster reduction[J]. Highway, 2022, 67(9): 30-37.
3 马敏, 胡大伟, 舒兰, 等. 城市轨道交通网络韧性评估及恢复策略分析[J]. 吉林大学学报:工学版, 2023, 53(2): 396-404.
Ma Min, Hu Da-wei, Shu Lan, et al. Resilience assessment and recovery strategy analysis of urban rail transit network[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 396-404.
4 殷凯. 城市交通网络韧性综合评估研究[D]. 北京: 北京交通大学交通运输工程学院, 2021.
Yin Kai. Research on comprehensive assessment of urban transport network resilience [D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2021.
5 Bruneau M, Chang S E, Eguchi R T. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
6 唐少虎, 朱伟, 程光, 等. 暴雨内涝下城市道路交通系统安全韧性评估[J]. 中国安全科学学报, 2022, 32(7): 143-150.
Tang Shao-hu, Zhu Wei, Cheng Guang, et al. Assessment of urban road traffic system safety resilience under rainstorm and water logging[J]. Chinese Journal of Safety Science, 2022, 32(7): 143-150.
7 Cimellaro G P, Reinhorn A M, Bruneau M. Seismic resilience of a hospital system[J]. Structure and Infrastructure Engineering, 2010, 6(1/2): 127-144.
8 刘杰. 泥石流路基破坏机理与拦挡结构设计研究[D]. 重庆: 重庆交通大学交通运输工程学院, 2018.
Liu Jie. Research on damage mechanism of debris flow subgrade and design of retaining structure[D]. Chongqing: College of Transportation Engineering, Chongqing Jiaotong University, 2018.
9 王林峰, 唐红梅, 陈洪凯. 泥石流冲击作用下路基的毁损机制研究[J]. 公路, 2011(11): 31-35.
Wang Lin-feng, Tang Hong-mei, Chen Hong-kai. Research on damage mechanism of subgrade under debris flow impact[J]. Highway, 2011(11): 31-35.
10 沈志红. 泥石流堆积区对公路工程的影响[D]. 西安:长安大学公路学院, 2010.
Shen Zhi-hong. Impact of debris flow accumulation area on highway engineering[D]. Xi'an: College of Highway, Chang'an University, 2010.
11 胡涛. 汶川震区震后大型泥石流致灾机理及防治对策研究[D]. 成都: 成都理工大学地质勘察学院, 2017.
Hu Tao. Research on the disaster mechanism and prevention countermeasures of large-scale debris flow after the Wenchuan earthquake[D]. Chengdu: College of Geological Exploration, Chengdu University of Technology, 2017.
12 冯明硕. 干旱半干旱地区暴雨型稀性泥石流运动学特征及防治研究[D]. 西安:长安大学水资源与环境学院, 2007.
Feng Ming-shuo. Study on the kinematic characteristics and prevention of rainstorm type rare debris flow in arid and semi arid areas[D]. Xi'an: College of Water Resources and Environment, Chang'an University, 2007.
13 罗恒. 云南省元谋县城泥石流治理工程效果评价[D]. 成都:成都理工大学地质勘察学院, 2018.
Luo Heng. Effect evaluation of debris flow control project in yuanmou county, yunnan province[D]. Chengdu: College of Geological Exploration, Chengdu University of Technology, 2018.
14 陈娱. 大箐泥石流对桥墩的冲击动力作用及灾害治理措施研究[D]. 昆明: 昆明理工大学国土资源学院, 2017.
Chen Yu. Research on impact dynamic effect of daqing debris flow on piers and disaster control measures[D]. Kunming: College of Land and Resources, Kunming University of Science and Technology, 2017.
15 瞿华南. 考虑坝后淤积作用下的泥石流冲击拦挡坝动力响应研究[D]. 成都: 成都理工大学地质勘查学院, 2021.
Qu Hua-nan. Study on the dynamic response of debris flow impacting the retaining dam under the consideration of sedimentation behind the dam[D]. Chengdu: College of Geological Exploration, Chengdu University of Technology, 2021.
16 杨再智. 云南大盈江浑水沟泥石流防治工程效益分析[D]. 昆明: 云南大学生态与环境学院, 2021.
Yang Zai-zhi. Benefit analysis of debris flow control project in Hunshui gully of Daying River in Yunnan[D]. Yunnan: School of Ecology and Environment, Yunnan University, 2021.
17 张文涛. 泥石流防治岩土-生态工程综合治理效果分析与评价[D]. 北京: 中国科学院大学建筑与土木工程学院, 2021.
Zhang Wen-tao. Analysis and evaluation of comprehensive control effect of geotechnical ecological engineering for debris flow control[D]. Beijing: School of Architecture and Civil Engineering, University of Chinese Academy of Sciences, 2021.
18 熊木齐, 郭富赟, 崔志杰, 等. 甘肃省武都区马槽沟泥石流特征及其治理工程效应[J]. 兰州大学学报, 2015, 51(6): 831-836.
Xiong Mu-qi, Guo Fu-yun, Cui Zhi-jie, et al. Characteristics of debris flow in Machao valley, Wudu district, Gansu province and its control engineering effects[J]. Journal of Lanzhou University, 2015, 51(6): 831-836.
19 周海波, 陈宁生, 卢阳, 等. 泥石流沟谷坊坝群治理效应——以地震极重灾区北川县化石板沟为例[J]. 山地学报, 2012, 30(3): 347-354.
Zhou Hai-bo, Chen Ning-sheng, Lu Yang, et al. The harnessing effect of debris flow gullies and gufang dams—taking Huashiban Gully in Beichuan County, a severely earthquake stricken area, as an example[J]. Journal of Mountain Science, 2012, 30(3): 347-354.
20 李彪. G310线牛背至麦积公路泥石流灾害处治设计研[J]. 甘肃科技, 2018, 34(16): 39-40.
Li Biao. Research on design of debris flow disaster treatment for Niubei Maiji Highway of G310 Line[J]. Gansu Science and Technology, 2018, 34 (16): 39-40.
21 王天健, 胡桂胜, 陈宁生, 等. 泥石流单双边防护堤防治效果对比——以曾达沟为例[J]. 防灾减灾学报, 2022, 38(1): 1-8.
Wang Tian-jian, Hu Gui-sheng, Chen Ning-sheng, et al. Comparison of prevention and control effects of single and bilateral protective dikes for debris flow—taking Zengda valley as an example[J]. Journal of Disaster Prevention and Reduction, 2022, 38(1): 1-8.
22 Nipa T J, Kermanshachi S. Resilience measurement in highway and roadway infrastructures: experts' perspectives[J]. Progress in Disaster Science, 2022, 14: No.100230.
23 Ouyang M, Dueñas-Osorio L, Min X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36/37: 23-31.
24 黄弘, 李瑞奇, 秦挺鑫, 等. 安全韧性城市评价模型与方法研究[M]. 北京: 清华大学出版社, 2021.
25 陈洪凯, 唐红梅. 泥石流两相冲击力及冲击时间计算方法[J]. 中国公路学报, 2006, 19(3): 19-23.
Chen Hong-kai, Tang Hong-mei. Mud-rock flow of two phase impact force and impact time calculation method[J]. China Journal of Highway, 2006, 19(3): 19-23.
26 陇南发布. 陇南交通路况信息[DB/OL]. [2023-01-15].
27 梁梦辉, 向灵芝, 沈娜, 等. 白龙江流域水峪沟泥石流危险性分析[J]. 路基工程, 2022(6): 214-219.
Liang Meng-hui, Xiang Ling-zhi, Shen Na, et al. Hazard analysis of debris flow in Shuiyu valley of Bailong river basin[J]. Subgrade Engineering, 2022(6): 214-219.
28 高路. 四川省九寨沟县牙屯沟泥石流灾害防治研究[D].成都: 成都理工大学地质勘查学院, 2011.
Gao Lu. Research on the prevention and control of debris flow in Yatun gully, Jiuzhaigou county, Sichuan province[D]. Chengdu: College of Geological Exploration, Chengdu University of Technology, 2011.
29 刘传正, 苗天宝, 陈红旗, 等. 甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因[J]. 地质通报, 2011, 30(1): 141-150.
Liu Chuan-zheng, Miao Tian-bao, Chen Hong-qi, et al. Basic characteristics and causes of the catastrophic mountain torrents and debris flows on August 8, 2010 in Zhouqu, Gansu[J]. Bulletin Geological, 2011, 30(1): 141-150.
[1] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[2] 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969.
[3] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[4] 黄晓明,赵润民. 道路交通基础设施韧性研究现状及展望[J]. 吉林大学学报(工学版), 2023, 53(6): 1529-1549.
[5] 刘振亮,赵存宝,吴云鹏,马迷娜,马龙双. 数据驱动的公路桥梁网络全寿命抗震韧性评估[J]. 吉林大学学报(工学版), 2023, 53(6): 1695-1701.
[6] 贾洪飞,徐英俊,杨丽丽,王楠. 商品车多式联运联盟成员选择及利益分配[J]. 吉林大学学报(工学版), 2023, 53(4): 1060-1069.
[7] 常玉林,徐文倩,孙超,张鹏. 车联网环境下考虑遵从程度的混合流量逐日均衡[J]. 吉林大学学报(工学版), 2023, 53(4): 1085-1093.
[8] 孙超,尹浩为,汤文蕴,褚昭明. 交通需求估计下的检测器布局和手机数据扩样推断[J]. 吉林大学学报(工学版), 2023, 53(4): 1070-1077.
[9] 姚荣涵,徐文韬,郭伟伟. 基于因子长短期记忆的驾驶人接管行为及意图识别[J]. 吉林大学学报(工学版), 2023, 53(3): 758-771.
[10] 肖雪,李克平,彭博,昌满玮. 基于决策-规划迭代框架的智驾车换道行为建模[J]. 吉林大学学报(工学版), 2023, 53(3): 746-757.
[11] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[12] 王菁,万峰,董春娇,邵春福. 城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023, 53(2): 439-447.
[13] 黄文博,陈艳艳,柴树山. 手机信息干预下寒冷赛区行人候车决策行为[J]. 吉林大学学报(工学版), 2023, 53(1): 132-140.
[14] 卢辉遒,赵枫,谢波,田彦涛. 冰雪环境下基于神经网络的驾驶人换道意图识别[J]. 吉林大学学报(工学版), 2023, 53(1): 273-284.
[15] 方松,马健霄,李根,沈玲宏,徐楚博. 城市快速路右侧车道移动作业区行车风险分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1786-1791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!