吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2474-2482.doi: 10.13229/j.cnki.jdxbgxb.20211193

• 车辆工程·机械工程 • 上一篇    下一篇

基于车辙图像的CE-4月球车挂钩牵引力判别

胡震宇1,2(),申彦2,3,王卫军1,2,罗小桃1,2,邹猛2,3()   

  1. 1.上海航天系统工程研究所,上海 201109
    2.行星地面力学与工程仿生联合实验室,上海 201109
    3.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2021-11-14 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 邹猛 E-mail:13917151873@139.com;zoumeng@jlu.edu.cn
  • 作者简介:胡震宇(1973-),男,研究员,博士.研究方向:飞行器机构和结构设计.E-mail:13917151873@139.com
  • 基金资助:
    国家自然科学基金项目(51775233);吉林省科技厅重点项目(20200401144GX)

Analysis of drawbar pull to CE⁃4 Lunar rover based on rutting image of wheel

Zhen-yu HU1,2(),Yan SHEN2,3,Wei-jun WANG1,2,Xiao-tao LUO1,2,Meng ZOU2,3()   

  1. 1.Shanghai Aerospace System Engineering Institute,Shanghai 201109,China
    2.Joint Lab for Planetary Terramechanics and Bionics Engineering,Shanghai 201109,China
    3.Key Laboratory of Bionics Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2021-11-14 Online:2023-09-01 Published:2023-10-09
  • Contact: Meng ZOU E-mail:13917151873@139.com;zoumeng@jlu.edu.cn

摘要:

为评估玉兔2号月球车月面行驶状态,提出了一种基于滑转率信息的月球车挂钩牵引力评价方法。该方法以玉兔2号月球车车轮与其地面原型车为试验对象,通过整车试验和土槽试验模拟玉兔2号月球行驶状态,以车辙信息、滑转率、轮上载荷作为输入参数,建立了沉陷量-滑转率、车辙间距-滑转率标定模型,并基于Matlab图像处理对滑转率进行识别。结果表明,玉兔2号月球车在月面特定区域D'、AB'点行驶时的滑转率分别为10.45%、12.96%、19.70%,挂钩牵引力分别为177.03、181.62、194.47 N。地面试验和反演计算结果表明,玉兔2月球车在以上区域行驶状态良好。

关键词: 地面力学, 月球车, 月壤, 滑转率, 车辙

Abstract:

In order to assess the lunar surface trafficability of YuTu-2 lunar rover, a kind of method of lunar rover drawbar pull evaluation based on slip ration information was proposed. The wheel of the Yutu-2 lunar rover and its ground prototype were used as the test objects, the YuTu-2's lunar drive was simulated by the whole vehicle test and soil trough test. With the input parameters of rutting information, slip rate and wheel load, the calibration models of sinkage-slip rate and rut spacing-slip rate were established, the slip rate was identified by Matlab image processing. The results showed that the slip rate of the YuTu-2 lunar rover traveled in the specified area of the lunar surface at locations D', A', and B', respectively is 10.45%, 12.96%, and 19.70%, and the drawbar pull is 177.03 N, 181.62 N, and 194.47 N.The ground test and inversion calculation results reveal that YuTu-2 travels well in the aforementioned region and satisfies the design requirements.

Key words: terramechanics, lunar rover, lunar soil, slip ratio, rutting

中图分类号: 

  • TU411

图1

月球车车轮"

图2

简化的车轮-土壤相互作用模型"

图3

有轮刺刚性轮与土壤作用模型"

图4

车辙图像反演试验流程"

表1

SNJ-2模拟月壤力学参数值"

类型kc/(kN·m-(n+1)kφ /(kN·m-(n+2)nc/kPaφ/(°)K/cm
SNJ-2148201.00.2730.91.95
月壤0~2.88201.00~5.913~551.78

图5

RUAG土槽测试系统"

图6

整车牵引力试验"

图7

玉兔2号视觉载荷整体位置示意图"

图8

玉兔2号图像载荷具体安装位置"

表2

玉兔2号月球车和导航相机姿态参数"

序号输入条件成像目标支持中心规划结果北京中心规划结果
1巡视器处于D'点,姿态:

导航相机对休眠区域环拍

云台俯仰-28°,桅杆偏航从-170°到-10°,间隔-20°云台俯仰-29°,桅杆偏航从-170°到-10°,间隔-20°
偏航146.863°,
俯仰-1.1°,
滚动-0.35°
2巡视器处于A点,姿态:导航相机对A'点云台俯仰-32°,桅杆偏航从-100°到20°、间隔20°云台俯仰-32°,桅杆偏航从-100°到20°、间隔20°
偏航-90.348°,
俯仰2.749°,
滚动-1.048°
3巡视器处于B'点,姿态:导航相机对C云台俯仰-28°,桅杆偏航从-170°到-10°,间隔20°云台俯仰-29°,桅杆偏航从-170°到-10°,间隔20°
偏航4.0543°,
俯仰4.8095°,
滚动-2.866°

图9

不同滑转率对应车轮沉陷"

图10

不同滑转率对应车辙图像"

图11

提取车辙间距特征"

图12

不同滑转率对应的车辙间距"

图13

整车模拟试验"

图14

视角转换-A点"

图15

试验点采集"

1 Cherkasov I I, Shvarev V V. Soviet investigations of the mechanics of lunar soils[J]. Soil Mechanics and Foundation Engineering, 1973, 10(4): 252-256.
2 Leonovich A K, Gromon V V, Rybakov A V, et al. Studies for lunar ground mechanical properties with the self-propelled lunokhod-l[R]. Moscow: Peredvizhnaya Laboratoriya na Luna-Lunokhod-1, 1971: 120-135.
3 Leonovich A K, Gromov V V, Rybakov A V, et al. Investigations of the mechanical properties of the lunar soil along the path of Lunokhod-1[R]. Berlin: COSPAR space research Ⅻ, 1972: 53-54.
4 Zacny K, Wilson J, Craft J, et al. Robotic Lunar Geotechnical Tool[M]. Honolulu: Earth and Space, 2010.
5 韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J]. 航天器工程, 2008, 17(3): 1-22.
Han Hong-shuo, Chen Jie. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3): 1-22.
6 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
Cui Ping-yuan, Xu Rui, Zhu Sheng-ying, et al. State of the art and developement trends of on-board autonomy technology for deep space explore[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28.
7 解杨敏, 季力, 魏祥泉, 等. 国内外行星表面巡视器自主导航技术研究[J]. 上海航天, 2021, 38(1): 61-71.
Xie Yang-min, Ji Li, Wei Xiang-quan, et al. Domestic and overseas research status on autonomous navigation technology of planetary rovers[J]. Aerospace Shanghai, 2021, 38(1): 61-71.
8 Team R. Characterization of the martian surface deposits by the Mars pathfinder rover, sojourner[J]. Science, 1997, 278(5344): 1765-1768.
9 Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the pathfinder rover[J]. Journal of Geophysical Research Planets, 1999, 104(E4): 8729-8746.
10 Sullivan R, Anderson R, Biesiadecki J, et al. Cohesions, friction angles, and other physical properties of martian regolith from mars exploration rover wheel trenches and wheel scuffs[J/OL]. [2021-11-02].
11 Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685): 821-824.
12 Arvidson R E, Bonitz R G, Robinson M L, et al. Results from the mars phoenix lander robotic arm experiment[J/OL]. [2021-11-03].
13 Ono M, Fuchs T J, Steffy A, et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning[C]∥2015 IEEE Aerospace Conference, Monoana, USA, 2015: 1-10.
14 Huang G. Visual-inertial navigation: a concise review[C]∥2019 International Conference on Robotics and Automation (ICRA), Monertal, Canada, 2019: 9572-9582.
15 Iagnemma K, Kang S, Brooks C, et al. Multi-sensor terrain estimation for planetary rovers[C]∥Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, NARA, Japan, 2003: No.12273618.
16 Reina G, Ojeda L, Milella A, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 185-195.
17 Cross M, Ellery A, Qadi A. Estimating terrain parameters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics, 2013, 50(3): 165-174.
18 崔平远, 刘冰, 居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制, 2008, 16(2): 245-269.
Cui Ping-yuan, Liu Bing, Ju He-hua. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurement&Control, 2008, 16(2): 245-269.
19 李萌, 高峰, 孙鹏, 等. 月壤力学参数反求及试验验证[J]. 北京航空航天大学学报, 2011, 37(9): 1081-1805.
Li Meng, Gao Feng, Sun Peng, et al. Mechanical parameters reverse estimation of lunar soil and experimental verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1081-1805.
20 薛龙, 邹猛, 李建桥, 等. 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报, 2015, 36(11): 3751-3758.
Xue Long, Zou Meng, Li Jian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3751-3758.
21 Ding L, Gao H, Deng Z, et al. Slip ratio for lugged wheel of planetary rover in deformable soil: definition and estimation[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, ST.Louis, USA, 2009: 3343-3348.
22 丁亮, 高海波, 邓宗全, 等. 基于应力分布的月球车轮地相互作用地面力学模型[J]. 机械工程学报, 2009, 45(7): 49-55.
Ding Liang, Gao Hai-bo, Deng Zong-quan, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering, 2009, 45(7): 49-55.
23 李楠, 丁亮, 高海波, 等. 基于视觉检测技术的星球探测车车轮滑转率检测方法[C]∥第三十二届中国控制会议, 西安, 2013: 3673-3679.
24 李楠, 高海波, 吕凤天, 等. 车辙图像频域分析及星球车车轮滑转率估计方法[J]. 宇航学报, 2016, 37(11): 1356-1364.
LI Nan, Gao Hai-bo, Lv Feng-tian, et al. Wheel trace imprint image frequency domain analysis and rover wheel slip ratio estimation[J]. Journal of Astronautics, 2016, 37(11): 1356-1364.
25 黄晗, 许述财, 张金换, 等. 基于轮辙非接触测量的月壤非参数化识别方法[J]. 吉林大学学报:工学版, 2019, 49(2): 366-374.
Huang Han, Xu Shu-cai, Zhang Jin-huan, et al. Non-parametric identification method for lunar regolith based on rut non-contact measurement[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 366-374.
26 黄晗, 李建桥, 陈百超, 等. 基于地面力学的筛网轮牵引通过性研究[J]. 农业机械学报, 2016, 47(): 464-470.
Huang Han, Li Jian-qiao, Chen Bai-chao, et al. Traction trafficability of wire mesh wheel based on terramechanics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 464-470.
27 陈百超, 邹猛, 党兆龙, 等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报: 工学版, 2019, 49(6): 1836-1843.
Chen Bai-chao, Zou Meng, Dang Zhao-long, et al. Experiment on preasure-sinkage for mesh wheels of CE-3 lunar rover on lunar regolith[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
28 李建桥, 黄晗, 党兆龙, 等. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报: 工学版, 2015, 45(1):167-173.
Li Jian-qiao, Huang Han, Dang Zhao-long, et al. Sinkage of wire mesh wheel under light load[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(1):167-173.
29 黄晗. 深空探测车辆筛网轮牵引通过性研究[D]. 长春: 吉林大学生物与农业工程学院, 2017.
Huang Han. Study on traction trafficability for wire mesh wheel of planetary exploration rovers[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2017.
30 Bekker M G. Theory of Land Locomotion[M]. Ann Arbor: University of Michigan Press, 1956.
[1] 田野,李楠楠,刘君巍,姜生元,王储,张伟伟. 基于支持向量机的模拟月壤临界尺度颗粒切削负载识别[J]. 吉林大学学报(工学版), 2023, 53(7): 2143-2151.
[2] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[3] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[4] 薛龙,姚猛,李立犇,李因武,邓湘金,李建桥,邹猛. 基于触月压痕的表层月壤力学状态试验分析[J]. 吉林大学学报(工学版), 2022, 52(3): 497-503.
[5] 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152.
[6] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397-405.
[7] 陈百超,邹猛,党兆龙,黄晗,贾阳,石睿杨,李建桥. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版), 2019, 49(6): 1836-1843.
[8] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[9] 黄晗, 李建桥, 陈百超, 吴宝广, 邹猛. 着陆器足垫冲击特性模型试验[J]. 吉林大学学报(工学版), 2017, 47(4): 1194-1200.
[10] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[11] 李建桥,黄晗,党兆龙,邹猛,王洋. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报(工学版), 2015, 45(1): 167-173.
[12] 王国富, 高峰, 徐国艳. 转向盘式全方位六足机器人运动分析及控制[J]. , 2012, 42(04): 1008-1014.
[13] 王孝兰, 王荣本. 基于刚柔耦合模型的月球车振动特性仿真[J]. 吉林大学学报(工学版), 2012, 42(02): 279-284.
[14] 曹凤萍1,2,王荣本2. 基于立体视觉的月球车运动估计算法[J]. 吉林大学学报(工学版), 2011, 41(6): 1592-1597.
[15] 葛平淑, 王荣本, 郭烈. 基于模糊逻辑的六轮月球车路径跟踪控制[J]. 吉林大学学报(工学版), 2011, 41(02): 503-0508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[4] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[5] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[6] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[7] 唐新星,赵丁选,黄海东,艾学忠,冯石柱 . 改进的工程机器人立体视觉标定方法[J]. 吉林大学学报(工学版), 2007, 37(02): 391 -0395 .
[8] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[9] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[10] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .