吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2483-2492.doi: 10.13229/j.cnki.jdxbgxb.20211236

• 车辆工程·机械工程 • 上一篇    下一篇

柴油机瞬变工况喷射参数及田口法协同优化对微粒排放的影响

冯爽1,2(),洪伟1,2,李小平1,2(),解方喜1,2   

  1. 1.吉林大学 汽车底盘集成与仿生全国重点实验室,长春 130022
    2.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2021-11-18 出版日期:2023-09-01 发布日期:2023-10-09
  • 通讯作者: 李小平 E-mail:452177412@qq.com;lixp2008@jlu.edu.cn
  • 作者简介:冯爽(1991-),男,博士研究生.研究方向:内燃机公害与控制.E-mail:452177412@qq.com
  • 基金资助:
    吉林省教育厅科学研究项目(JJKH20221002KJ);吉林大学汽车底盘集成与仿生全国重点实验室自由探索项目(sacl-zytsxm-202014)

Effects of injection parameters and taguchi method on particulate emissions of diesel engine under transient conditions

Shuang FENG1,2(),Wei HONG1,2,Xiao-ping LI1,2(),Fang-xi XIE1,2   

  1. 1.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    2.College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2021-11-18 Online:2023-09-01 Published:2023-10-09
  • Contact: Xiao-ping LI E-mail:452177412@qq.com;lixp2008@jlu.edu.cn

摘要:

为研究发动机“恒转增扭”瞬变工况下的微粒排放特性及优化方法,以车用2.8 L增压柴油机为研究对象,首先研究了单因素喷射参数对柴油机瞬态加载工况微粒排放的影响;随后设计了田口正交试验,给出以微粒数量及质量为输出指标的最优控制参数组合,并确定了各控制参数的影响权重。结果表明:在瞬变加载过程中,小尺寸核态颗粒物数量浓度恶化明显,大尺寸聚集态颗粒物质量浓度显著恶化;适当地将主喷时刻提前、增大轨压以及引入恰当的后喷可降低微粒排放;同时,控制参数对核态和聚集态微粒的影响存在Trade-off关系,对微粒排放影响权重相对较大的均为喷油时刻的影响,即喷油正时和主后喷间隔。

关键词: 柴油机, 瞬变工况, 微粒排放, 喷射参数, 协同优化

Abstract:

To study the particulate emissions characteristics and optimization methods of the engine under transient conditions, takes a 2.8 L turbocharged diesel engine as the research object. Firstly, the effects of single factor injection parameters on the particulate emissions under transient loading conditions were studied. Then,Taguchi orthogonal experiment was designed to give the optimal control parameter combination with the number and quality of particles, and the influence weight of each control parameter was determined. The results show that during the transient loading process, the number and concentration of small-sized nuclear particles deteriorated significantly, and the mass concentration of large-sized accumulated particles deteriorated significantly; Appropriately advancing the injection timing, increasing the injection pressure and the introduction of post-injection can reduce particulate emissions; Meanwhile, the effect of control parameters on nuclear and accumulated particulates has a trade-off relationship, and the relatively large weight of particulate emissions is the effect of fuel injection timing, that is the factor of injection timing and post injection interval.

Key words: diesel engine, transient conditions, particle emission, injection parameters, collaborative optimization

中图分类号: 

  • TK421.5

表1

试验用发动机详细参数"

发动机参数技术规格
发动机形式压燃、直列、四缸、四冲程
排量/L2.771
缸径×行程/mm×mm95.4×104.9
压缩比17.2∶1
喷孔数/个6
最高供油压力/MPa170
每缸气门数4(进、排气各两个)

(最大扭矩/转速)/[(N·m)/

(r·min-1)]

240/(1400~2600)

(额定功率/转速)/[kW/

(r·min-1)]

80/3400
怠速转速/(r·min-1800±30
排放标准国V

图1

发动机瞬态测试平台示意图"

表2

瞬变工况试验方案"

因素

主喷时刻/

(℃A ATDC)

轨压/MPa后喷比例/%主后喷间隔/(℃A ATDC)

主喷

角度

原机、原机±3、原机±6原机
轨压原机原机、原机±20
主、后喷间隔原机原机105、10、15、20

后喷

比例

原机原机5、10、15、2010

图2

主喷对不同粒径微粒数量浓度的影响"

图3

主喷对不同粒径微粒质量浓度的影响"

图4

轨压对微粒数量浓度的影响"

图5

轨压对微粒质量浓度的影响"

图6

后喷对微粒总数量浓度的影响"

表3

田口试验水平和因素相关参数"

因素水平1水平2水平3水平4水平5
主喷正时A/℃A原-6原-2原机原+2原+4
轨压B/MPa原-20原-10原机原+10原+20
主后喷间隔C/μs10001500175020002500
后喷比例D/%51012.51520

图7

不同模态微粒数量信噪比响应曲线"

图8

不同模态微粒数量及质量信噪比响应曲线"

图9

各控制参数对微粒数量及质量影响权重"

1 Nilsson T, Froberg A, Aslund J. Optimal operation of a turbocharged diesel engine during transients[J] SAE International Journal of Engines, 2012,5(2): 571-578.
2 隋菱歌. 增压柴油机瞬态工况性能仿真及优化[D].长春:吉林大学汽车工程学院,2012.
Sui Ling-ge. Simulation and optimization of turbo charged diesel engine performance under transient operations[D]. Changchun; College of Automotive Engineering, Jilin University, 2012.
3 Rakopoulos C D, Michos C N, Giakoumis E G. Study of the transient behavior of turbocharged diesel engines including compressor surging using a linearized quasi-steady analysis[C]∥SAE Paper, 2005-01-0225.
4 Rakopoulos C D, GiakoumisE G, Rakopoulos D C. The effect of friction modelling on the prediction of turbocharged diesel engine transient operation[C]∥SAE Paper, 2004-01-0925.
5 Grahn M, Johansson K, McKelvey T. Model-based diesel engine management system optimization for transient engine operation[J]. Control Engineering Practice, 2014, 29: 103-114.
6 Atkinson C, Allain M, Zhang H. Using model-based rapid transient calibration to reduce fuel consumption and emissions in diesel engines[C]∥SAE Paper, 2008-01-1365.
7 Atkinson C, Mott G. Dynamic model-based calibration optimization: an introduction and application to diesel engines[C]∥SAE Paper, 2005-01-0026, 2005.
8 Liu S, Cui Y, Wang Y, et al. An evaluation method for transient response performance of turbocharged diesel engines[J]. Energy, 2019, 182:852-863.
9 付建勤. 车用发动机瞬变工况运行与性能参数连续检测及热功转换过程研究[D]. 长沙:湖南大学机械与运载工程学院, 2014.
Fu Jian-qin. Continuous detecting on the operating and performance parameters of automotive engine under transient conditions and study of the heat-work conversion process[D]. Changsha; College of Mechanical and Vehicle Engineering, Hunan University, 2014.
10 张龙平. 车用柴油机瞬变工况性能劣变及其控制策略研究[D]. 长春:吉林大学汽车工程学院,2015.
Zhang Long-ping. Investigation of performance deterioration and control strategy of automotive diesel engine under transient operation conditions[D]. Changchun: College of Automotive Engineering, Jilin University, 2015.
11 刘长铖. 车用增压柴油机瞬变过程能量流及㶲流分析[D]. 长春:吉林大学汽车工程学院, 2020.
Liu Chang-cheng. Analysis of energy flow, exergy flow and optimization of energy efficiency in an automotive turbocharged diesel engine[D]. Changchun; College of Automotive Engineering, Jilin University, 2020.
12 Tan Pi-qiang, Ruan Shuai-shuai, Hu Zhi-yuan, et al. Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions[J]. Applied Energy, 2014, 113: 22-31.
13 谭丕强, 胡志远, 楼狄明, 等. 车用柴油机瞬变工况的排气颗粒数量[J]. 机械工程学报, 2012, 48(14): 134-140.
Tan Pi-qiang, Hu Zhi-yuan, Lou Di-ming. Quantity of exhaust particles in vehicle diesel engine under transient conditions[J]. Chinese Journal of Mechanical Engineering, 2012, 48(14): 134-140.
14 Sun Wan-chen, Wang Qiao, Guo Liang, et al. Influence of biodiesel/diesel blends on particle size distribution of CI engine under steady/transient conditions[J]. Fuel, 2019, 245: 336-344.
15 Zhang X B, Wang Z X, Xiao B, et al. A neural network learning-based global optimization approach for aero-engine transient control schedule[J]. Neurocomputing, 2021, 469: 180-188.
16 Zhang Miao-miao, Hong Wei, Xie Fang-xi, et al. Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method[J]. Energy Conversion and Management, 2018, 164: 344-352.
17 Uslu S, Yaman H, Yesilyurt M K. Optimization of parameters affecting the performance and emissions of a spark ignition engine fueled with n-pentanol/gasoline blends using taguchi method[J]. Arabian Journal for Science and Engineering, 2021, 46(12): 11711-11724.
[1] 焦玉玲,邓雪,李琳,刘文佳,张天泽,曹楠. 多约束条件下双边U型装配线平衡与协同优化[J]. 吉林大学学报(工学版), 2023, 53(7): 2053-2060.
[2] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[3] 刘洋,刘吉成. 基于大数据与粒子群的清洁能源协同优化调度方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1443-1448.
[4] 马苗苗,刘立成,王鑫,杨茂. 风光发电与新能源汽车协同优化调度策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2096-2106.
[5] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[6] 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 417-424.
[7] 苏岩,王博,刘宇,解方喜,胡云峰,段加全. 柴油喷射时刻及汽油比例对均质混合气引燃模式排放性能的影响[J]. 吉林大学学报(工学版), 2022, 52(1): 37-45.
[8] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[9] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[10] 王乔,孙万臣,郭亮,程鹏,范鲁艳,李国良. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1920-1928.
[11] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[12] 祖象欢,杨传雷,王贺春,王银燕. 船用柴油机废气再循环性能评估及应用[J]. 吉林大学学报(工学版), 2019, 49(3): 805-815.
[13] 杨帅, 冯志炜, 赵治国, 周毅. 不同米勒循环方式对柴油机工作过程影响的一维模拟分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1444-1454.
[14] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[15] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715 -1725 .
[2] 王洪雁,邱贺磊,郑佳,裴炳南. 光照变化下基于低秩稀疏表示的视觉跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(1): 268 -277 .
[3] 王雪松, 李躬军, 赵寿经, 安岩, 曲庆玲, 卢超. 人参DS和D12H基因的异源共表达[J]. 吉林大学学报(工学版), 2016, 46(4): 1368 -1372 .
[4] 马常友, 高海波, 丁亮, 于海涛, 邢宏军, 邓宗全. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报(工学版), 2019, 49(6): 2027 -2037 .
[5] 陈国迎,姚军,王鹏,夏其坤. 适用于后轮轮毂驱动车辆的稳定性控制策略[J]. 吉林大学学报(工学版), 2021, 51(2): 397 -405 .
[6] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704 -711 .
[7] 谷远利, 张源, 芮小平, 陆文琦, 李萌, 王硕. 基于免疫算法优化LSSVM的短时交通流预测[J]. 吉林大学学报(工学版), 2019, 49(6): 1852 -1857 .
[8] 陈传海,王成功,杨兆军,刘志峰,田海龙. 数控机床可靠性建模研究现状及发展动态分析[J]. 吉林大学学报(工学版), 2022, 52(2): 253 -266 .
[9] 申铉京, 刘阳阳, 黄永平, 徐铁, 何习文. 求解TSP问题的快速蚁群算法[J]. 吉林大学学报(工学版), 2013, 43(01): 147 -151 .
[10] 陈昭明,邹劲松,王伟,石明全. 改进粒子群神经网络融合有限元分析的铸锻双控动态成型多目标优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1524 -1533 .