吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2879-2885.doi: 10.13229/j.cnki.jdxbgxb.20220333

• 交通运输工程·土木工程 • 上一篇    下一篇

建筑板柱结构冲切破坏试验及节点承载力分析

邸振勇1(),杨新辉2,林霄3   

  1. 1.西南大学 审计处,重庆 400715
    2.中国建筑科学研究院 地基基础研究所,北京 100027
    3.西南大学 工程技术学院,重庆 400715
  • 收稿日期:2022-03-29 出版日期:2023-10-01 发布日期:2023-12-13
  • 作者简介:邸振勇(1969-),男,高级工程师.研究方向:建筑结构,工程技术(造价、管理).E-mail:dizhenyong8@163.com
  • 基金资助:
    中国建筑科学研究院科研项目(20151602330730037)

Punching shear failure test and joint bearing capacity analysis of building slab column structure

Zhen-yong DI1(),Xin-hui YANG2,Xiao LIN3   

  1. 1.Audit Department,Southwest University,Chongqing 400715,China
    2.Foundation Research Institute,Chinese Academy of Building Sciences,Beijing 100027,China
    3.College of Engineering and Technology,Southwest University,Chongqing 400715,China
  • Received:2022-03-29 Online:2023-10-01 Published:2023-12-13

摘要:

为保证建筑板柱结构的使用安全,以钢筋、水泥等为原料制作建筑板柱结构试件板,并实施冲切破坏试验,通过荷载-挠度曲线分析试件板各节点的冲切破坏过程及位移情况,根据节点承载力计算公式分别求解不同板厚、混凝土强度、纵向配筋率、冲垮比下节点承载力,并分析各因素变化对节点承载力的影响。试验结果表明:当试件板纵向荷载增加至最大承载力时,发生瞬时脆性破坏,各位移测点均发生翘曲,配筋率低的试件翘曲严重;试件板厚相同时,空心率越小,抗冲切承载力越大;大幅增大试件板厚度、钢筋配筋率、混凝土强度、降低冲垮比可提高试件板的抗冲切承载力,当配筋率从0.6%提升至1.4%时,节点抗冲切承载力最高可增大29.2%,当冲垮比为7、配筋率为0.6%时,增大混凝土强度,节点冲切承载力升幅较小。本文研究分析可在一定程度上为提升建筑板柱结构的承载力提供借鉴。

关键词: 建筑板柱结构, 冲切破坏, 承载力, 冲垮比, 纵向配筋率, 混凝土强度

Abstract:

In order to ensure the safety of the building slab-column structure, the slab-column structure specimen plate was made with steel bars, cement, etc. as raw materials, and the punching failure test was carried out. According to the calculation formula of the joint bearing capacity, the joint bearing capacity under different plate thicknesses, concrete strength, longitudinal reinforcement ratio, and crush ratio was calculated, and the influence of each factor change on the joint bearing capacity was analyzed. The experimental results show that when the longitudinal load of the specimen plate increases to the maximum bearing capacity, instantaneous brittle failure occurs, and warpage occurs at all displacement measuring points. The smaller the value, the greater the punching shear bearing capacity; greatly increasing the thickness of the specimen plate, the reinforcement ratio of reinforcement, the concrete strength, and reducing the punching collapse ratio can improve the punching shear bearing capacity of the specimen plate. When the reinforcement ratio increases from 0.6% to 1.4%, the maximum punching shear bearing capacity of the node can be increased by 29.2%. When the punching ratio is 7 and the reinforcement ratio is 0.6%, the increase of the concrete strength is small, and the increase in the punching shear bearing capacity of the node is small. To a certain extent, the bearing capacity of the building slab-column structure is improved.

Key words: building slab column structure, punching failure, bearing capacity, washout ratio, longitudinal reinforcement ratio, concrete strength

中图分类号: 

  • TU375.2

表1

C30、C50强度混凝土制备原料成分 (kg)"

混凝土强度水泥河沙卵石
C3010018532453
C5010019729433

表2

试件主要参数"

试件混凝土强度冲垮比纵筋 配置纵筋率板厚/mm空心率/%
E5-30-1C30514@1200.610526.4
E5-30-2C30514@801.413035.5
E5-30-3C30514@800.613028.1
E5-30-4C30514@800.613023.2
E5-30-5C30514@800.613035.1
E5-30-6165514@800.616543.8
E5-50-1C50514@1200.610526.4
E5-50-2C50514@801.410526.4
E7-30-1C30714@1200.610526.4
E7-30-2C30714@801.410526.4
E7-50-1C50714@1200.610526.4
E7-50-2C50714@801.410526.4

图1

试验装置图"

图2

位移测点设计"

图3

荷载-中心挠度曲线分析"

图4

各位移测点的荷载-挠度曲线"

表3

板厚对冲切承载力的影响"

试件板厚/mm空心率/%实心冲切面面积/mm2冲切承载力/kN
E5-30-110526.4102.2185
E5-30-213035.5112.3195
E5-30-616543.8126.3205
E5-30-313028.1118.1205
E5-30-413023.2122.8225
E5-30-513035.1113.1201

表4

纵向钢筋配筋率对冲切承载力的影响"

试件混凝土强度冲垮比纵向配筋率/%抗冲切承载力/KN
E5-30-1C3050.6770
E5-30-2C3051.4925
E5-50-1C5050.6960
E5-50-2C5051.41240
E7-30-1C3070.6720
E7-30-2C3071.4900
E7-50-1C5070.6780
E7-50-2C5071.4970

表5

混凝土强度与板柱节点冲切承载力的关系分析"

试件混凝土强度/MPa冲垮比轴心抗压强度fc /MPa抗拉强度ft /MPa冲切承载力/kN
E5-30-1C30530.52.99770
E5-30-2C30537.23.31925
E5-50-1C50539.83.41960
E5-50-2C50542.33.531240
E7-30-1C30722.82.55720
E7-30-2C30725.72.73900
E7-50-1C50738.93.37780
E7-50-2C50735.63.34970

表6

冲垮比与冲切承载力的关系分析"

组别试件冲垮比模拟极限 位移/mm冲切承载 力/kN
一组E5-50-158.9956
E7-50-1711.2775
E5-30-159.2775
E7-30-1712.3716
二组E5-50-256.31232
E7-50-2710.8967
E5-30-257.3917
E7-30-2711.5897
1 王朋,于彬,史庆轩,等. 钢筋混凝土板柱节点冲切破坏模型及承载力分析[J]. 西安建筑科技大学学报:自然科学版,2020,52(6):852-859.
Wang Peng, Yu Bin, Shi Qing-xuan,et al. Punching failure models and bearing capacity analysis of reinforced concrete slab-column connections[J]. Journal of Xi'an University of Architecture & Technology (Science Edition),2020,52(6):852-859.
2 李伊晨,李易,周大兴,等. 设置托板和暗梁的板柱节点冲剪后受力性能的试验研究[J]. 地震工程与工程振动,2020,40(5):178-186.
Li Yi-chen, Li Yi, Zhou Da-xing,et al. Experimental study on post-punching mechanical performance of flat slab-column joints with drop panel and embedded beam[J]. Earthquake Engineering and Engineering Vibration,2020,40(5):178-186.
3 党隆基,庞瑞,梁书亭,等. 板柱节点极限承载力计算及国内外规范比较[J]. 建筑科学,2019,35(1):32-37, 134.
Dang Long-ji, Pang Rui, Liang Shu-ting,et al. Ultimate bearing capacity calculation of slab-column connections and comparative study on different codes at home and abroad[J]. Building Science, 2019, 35(1): 32-37, 134.
4 黄川腾,王志军,庞慧英,等. 现浇钢筋混凝土空心楼盖板柱节点抗冲切性能试验研究[J]. 建筑结构,2019,49(13):124-131.
Huang Chuan-teng, Wang Zhi-jun, Pang Hui-ying,et al. Experimental study on punching shear behavior of slab-column joint for cast-in-situ reinforced concrete hollow floor structure[J]. Building Structure, 2019, 49(13):124-131.
5 赵晋,易伟建. 无腹筋板柱节点抗冲切承载力计算研究[J]. 建筑结构, 2019,49(13):120-123, 131.
Zhao Jin, Yi Wei-jian. Calculation and study on punching bearing capacity of slab-column joints without shear reinforcement[J]. Building Structure, 2019, 49(13):120-123, 131.
6 史庆轩,蒋明月. 钢筋混凝土板柱节点受冲切承载力计算方法分析[J]. 建筑结构,2021,51(2):1-8, 45.
Shi Qing-xuan, Jiang Ming-yue.Analysis on calculation methods of punching shear capacity of reinforced concrete slab-column connections[J]. Building Structure, 2021, 51(2):1-8, 45.
7 王仲衡,罗斌,张旻权,等. 建筑索结构销轴耳板连接节点承载力试验研究和有限元分析[J]. 建筑结构学报,2020,41(11):150-159.
Wang Zhong-heng, Luo Bin, Zhang Min-quan,et al. Experimental study and finite element analysis on bearing capacity of pin-connected plate joints[J]. Journal of Building Structures, 2020, 41(11):150-159.
8 尚鋆,周理,黄勇. 型钢混凝土组合板柱节点冲切破坏机理研究[J]. 四川建筑科学研究, 2020, 46(2):32-42.
Shang Jun, Zhou Li, Huang Yong. Study on punching failure mechanism of steel reinforced concrete slab-column joints[J]. Sichuan Building Science,2020,46(2):32-42.
9 王贵,张大长,王龙飞. 反复荷载下圆钢管45°单插板节点承载力特性试验及理论分析[J]. 土木工程与管理学报,2019,36(1):169-174.
Wang Gui, Zhang Da-chang, Wang Long-fei. Experimental study and theoretical analysis on bearing capacity behavior of 45° steel tube-gusset plate connections subjected to cyclic load[J]. Journal of Civil Engineering and Management,2019,36(1):169-174.
10 庞瑞,朱筱俊,杨建,等. ECC/RC空心楼盖板柱节点抗冲切性能[J]. 建筑科学与工程学报,2019,36(1):93-100.
Pang Rui, Zhu Xiao-jun, Yang Jian,et al. Punching shear behavior of ECC/RC hollow floor slab-column connection[J]. Journal of Architecture and Civil Engineering,2019,36(1):93-100.
11 冯梓航,杨小平,郑月昱,等. 板柱式地铁车站中板承载性能研究[J]. 施工技术, 2019, 48(7):109-113.
Feng Zi-hang, Yang Xiao-ping, Zheng Yue-yu,et al. Research on bearing capacity of middle plates in slab-column metro stations[J]. Construction Technology, 2019, 48(7):109-113.
12 杨友喆,李易,周大兴,等. 板柱节点冲剪破坏后的精细有限元分析[J]. 工程力学, 2020, 37(6):206-215.
Yang You-zhe, Li Yi, Zhou Da-xing,et al. Fine finite element analysis of slab-column joints after punching shear[J]. Engineering Mechanics, 2020, 37(6): 206-215.
13 刘小燕,王光辉,陈偲鹏,等. 受撞钢筋混凝土梁抗弯承载力试验研究[J]. 应用基础与工程科学学报, 2019, 27(5):1033-1041.
Liu Xiao-yan, Wang Guang-hui, Chen Cai-peng, et al. Flexural bearing capacitytest study for impacted reinforced concrete beams[J]. Journal of Basic Science and Engineering, 2019, 27(5):1033-1041.
14 庞瑞,王璐,倪红梅,等. 混凝土空心楼盖板柱增强节点抗震性能试验研究[J]. 防灾减灾工程学报,2020,40(6):919-928.
Pang Rui, Wang Lu, Ni Hong-mei,et al. Experimental study on the seismic behavior of strengthened RC slab-column connections in flate plate structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6):919-928.
15 李沙沙,蒋玉飞,康英. 装配式建筑构件连接结构受力特性数值模拟[J]. 计算机仿真, 2021, 38(1):198-202.
Li Sha-sha, Jiang Yu-fei, Kang Ying. Numerical simulation of mechanical characteristics of prefabricated building component connection structure[J]. Computer Simulation, 2021, 38(1):198-202.
[1] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[2] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[3] 张艳青,吕宇宣,韩石,尤龙飞,曾俊,侯飞阳. 管幕预筑结构构件受弯性能试验[J]. 吉林大学学报(工学版), 2023, 53(5): 1390-1399.
[4] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[5] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[6] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[7] 许博,李传习. 基于灰色理论的大跨度钢管混凝土拱桥承载能力检测方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2360-2366.
[8] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[9] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[10] 戴岩,聂少锋,周天华. 环梁式圆钢管约束H型钢混凝土柱-钢梁节点抗剪承载力[J]. 吉林大学学报(工学版), 2021, 51(3): 977-988.
[11] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[12] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[13] 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161.
[14] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[15] 刘志峰, 浑连明, 殷亚文, 王建华, 罗宗兰, 董湘敏. 考虑离心力的定量式扇形静压转台承载力建模[J]. 吉林大学学报(工学版), 2017, 47(6): 1791-1795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!