吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 22-43.doi: 10.13229/j.cnki.jdxbgxb.20230651

• 综述 • 上一篇    下一篇

胶粉改性沥青老化机理及表征评价研究综述

唐乃膨1,2(),薛晨阳2,刘少鹏3,朱洪洲1,2(),李睿1,2   

  1. 1.重庆交通大学 交通土建工程材料国家地方联合工程研究中心,重庆 400074
    2.重庆交通大学 土木工程学院,重庆 400074
    3.交通运输部规划研究院,北京 100028
  • 收稿日期:2023-04-13 出版日期:2024-01-30 发布日期:2024-03-28
  • 通讯作者: 朱洪洲 E-mail:tnp@cqjtu.edu.cn;zhuhongzhouchina@cqjtu.edu.cn
  • 作者简介:唐乃膨(1990-),男,副教授,博士.研究方向:路面材料及结构.E-mail:tnp@cqjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51808073);重庆市教育委员会科学技术研究计划青年项目(KJQN202100725);重庆市自然科学基金项目(cstc2021jcyj-msxmX0637);重庆市研究生联合培养基地建设项目(JDLHPYJD2020014);重庆市研究生科研创新项目(CYS23482)

Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt

Nai-peng TANG1,2(),Chen-yang XUE2,Shao-peng LIU3,Hong-zhou ZHU1,2(),Rui LI1,2   

  1. 1.National & Local Joint Engineering Research Center for Transportation Civil Engineering Materials,Chongqing Jiaotong University,Chongqing 400074,China
    2.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    3.Transport Planning and Research Institute,Ministry of Transport,Beijing 100028,China
  • Received:2023-04-13 Online:2024-01-30 Published:2024-03-28
  • Contact: Hong-zhou ZHU E-mail:tnp@cqjtu.edu.cn;zhuhongzhouchina@cqjtu.edu.cn

摘要:

综述了国内外对胶粉改性沥青老化机理、表征及评价的研究现状。胶粉改性沥青的老化过程伴随着胶粉的溶胀、降解反应以及沥青与胶粉之间的物质交互作用;胶粉改性沥青老化行为的表征主要从化学组分、分子结构、分子量、表面形貌入手,并解释其对宏观性能的影响;胶粉改性沥青老化性能评价主要采用黏度、复数模量、低温蠕变劲度、疲劳寿命等流变学指标,且通常与微观表征及化学方法相结合。然而,当前国内外对胶粉改性沥青老化过程中填料迁移行为关注较少,特别是炭黑、白炭黑等填料的作用机理有待进一步挖掘;缺乏胶粉改性沥青多组分老化特征同步表征方法;缺乏统一的老化评价指标,且大多研究在混合料老化性能验证方面存在不足。最后,提出了胶粉改性沥青老化机理及表征评价研究的发展趋势与展望。

关键词: 道路工程, 胶粉改性沥青, 综述, 老化机理, 老化表征, 老化评价

Abstract:

State of the art of the aging mechanism, characterization and evaluation of CRMA at home and abroad are summarized. The aging process of CRMA is accompanied by swelling, degradation reaction of crumb rubber and the interaction between asphalt and crumb rubber. The aging behavior of CRMA is mainly characterized from the chemical components, molecular structure, molecular weight and surface morphology, and their effects on macroscopic properties are explained. Rheological parameters such as viscosity, complex shear modulus, creep stiffness at low temperature and fatigue life are mainly used to evaluate the aging performance of CRMA, which are usually combined with microscopic characterization and chemical methods. However, during the aging process of CRMA, the migration behavior of fillers, e.g., carbon black, white carbon black, received less attention. In addition, there is a lack of simultaneous characterization method for multi-component aging characteristics of CRMA. There are no universal aging evaluation indexes for CRMA, and most of the studies are insufficient in the aging performance verification at mixture level. The development trend and prospect of aging mechanism, characterization and evaluation of CRMA are proposed.

Key words: road engineering, crumb rubber modified asphalt, review, aging mechanism, aging characterization, aging evaluation

中图分类号: 

  • U414

表1

不同沥青老化机理"

不同沥青老化机理老化机理异同总结
沥青氧化聚合物降解溶胀作用物质交互
基质沥青老化过程中发生吸氧氧化反应,轻质组分挥发,生成含氧官能团,沥青中大分子增多32发生胶粉改性沥青老化机理与基质沥青和SBS改性沥青不同,更加复杂。
SBS改性沥青沥青氧化老化及SBS聚合物的老化共同发生,两者相互作用,减轻老化进度3334发生发生短期老化存在溶胀与再交联现象发生
胶粉改 性沥青橡胶沥青老化过程中发生沥青的氧化35、胶粉溶胀36、降解37及胶粉中炭黑等填料的迁移38。胶粉的溶胀、降解及填料迁移能够改善沥青的抗老化性能,延缓老化进程。发生短期老化较弱,长期老化剧烈短期老化剧烈,长期老化较弱发生
脱硫胶粉改性沥青发生与胶粉初始脱硫降解程度相关与胶粉初始脱硫降解程度相关发生
TB胶粉改性沥青发生整个老化过程都较弱整个老化过程都较弱发生

图1

胶粉改性沥青老化机理"

图2

胶粉的吸收和溶胀示意图[40]"

图3

40目废胎胶粉老化前后扫描电镜表面形貌[36]"

图 4

胶粉脱硫降解示意图"

图 5

沥青氧化老化示意图"

图6

胶粉解聚及填料释放示意图"

表2

胶粉改性沥青老化机理"

老化机理机理简述研究现状局限性

胶粉

溶胀作用

胶粉吸收沥青轻质组分而发生溶胀,同时在颗粒表面形成沥青质含量很高的凝胶膜39研究较多,但多集中于胶粉改性沥青的短期老化对溶胀作用的研究多集中于短期老化,缺乏对长期老化过程中溶胀作用的系统研究;胶粉和沥青的物质交互作用研究较少,缺乏明确的结论

胶粉

脱硫降解

橡胶网状大分子结构适度氧化解聚,变成大量的小体型网状结构和少量链状物38研究较为成熟,结论明确

沥青

氧化老化

沥青老化过程中,轻质组分受热与氧气发生反应,生成硬质组分,并产生新的官能团57研究较多,且研究结论较为明确

物质

交互作用

沥青老化过程中,胶粉发生解聚,炭黑、白炭黑等填料进入到沥青相中,对沥青相产生影响38研究较少,且缺乏明确的研究结论

图7

沥青老化过程中四种组分相互转化关系[71]"

表3

橡胶沥青紫外光老化后的四组分试验结果[35]"

老化时间/d饱和分/%芳香分/%胶质/%沥青质/%
016.5332.0940.5210.86
215.3930.2441.0113.36
415.0528.4737.7218.76
614.1426.8235.5923.45
814.3824.4330.5230.67
1013.9621.2628.5736.21

图8

固相萃取法分离沥青四组分原理图[70]"

图9

TB沥青和基质沥青的FTIR光谱和TB-A沥青的TG曲线[82]"

图10

凝胶渗透色谱分离示意图[86]"

图11

GPC测试的LMS值[89]"

图12

橡胶沥青在不同老化程度下的扫描电镜图像[99]"

图13

老化前后胶粉改性沥青与SBS改性沥青扫描电镜图片[100]"

图14

基质沥青和胶粉改性沥青老化的原子力显微图[104]"

图15

胶粉改性沥青在低温环境下(-18 ℃)不同时间的AFM图像[106]"

表4

胶粉改性沥青不同老化表征方法总结"

老化表征试验方法研究现状局限性
化学组分变化SARA 65、对SARA的改进9、TLC-FID 67、GC-MS 70表征方法较多,研究结论成熟各类表征方法之间关联较弱,缺乏对胶粉改性沥青老化过程中微观层面变化的同步表征方法;缺乏基于相态分离的有效表征方法;且一些表征方法在应用于胶粉改性沥青时仍存在不足,需要创新
分子结构变化FTIR 76、NMR 81、TG 82、DSC 83表征方法较多,结论明确
分子量变化GPC 89研究结果较为明确,但方法单一,且在胶粉改性沥青表征中存在不足
微观形貌变化SEM 99、AFM 103表征方法较多,结论明确
基于相态分离的变化胶粉筛析分离实验及溶剂洗脱实验107、显微试验与FTIR试验的结合108研究较少,且当前表征方法存在一定的缺陷

表5

不同沥青常用老化评价指标对比"

老化指标基质沥青129?135SBS改性沥青34136?138胶粉改性沥青102114115122123139总结
常规指标针入度、软化点、延度目前对于胶粉改性沥青老化的评价与常规沥青区别不明显,都是以流变学指标为主;结合微观结构特征评价沥青的老化状态
高温流变指标车辙因子、黏度、复模量、相位角
不可恢复蠕变柔量、恢复率
低温流变指标劲度模量、蠕变速率等
疲劳指标疲劳因子疲劳寿命
微观指标官能团指标、微观形貌、四组分变化、分子量
粘附性指标应用较少接触角、表面自由能应用较少

表6

胶粉改性沥青老化评价研究概述"

老化评价老化指标研究现状局限性
基于高温性能PAR、ISP、DAR、VAI、|G*|、δRJnr、 |G*|/sinδ102113-116各种性能指标种类较多,能够根据不同性能需求展开胶粉改性沥青的老化性能评价各类指标评价标准不统一,流变学指标与微观指标之间的关联性较差,缺乏具有代表性的胶粉改性沥青老化状态评价指标体系
基于低温性能mSS/mCTk值、SA78117118
基于疲劳性能Nf、|G*|sinδC*AI等117119120
高低温及疲劳性能结合相对影响因子121
基于流变学与微观结合的老化评价流变学指标结合FTIR指标122-124研究较多,存在较多流变学与微观结合的评价指标与老化模型
流变学指标结合组分分析27125
流变学指标结合微观形貌126
流变学指标结合各类微观指标102127
1 马涛, 陈葱琳, 张阳, 等. 胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报, 2021, 34 (10): 1-16.
Ma Tao, Chen Cong-lin, Zhang Yang, et al. Development of using crumb rubber in asphalt modification: a review[J]. China Journal of Highway and Transport, 2021, 34(10): 1-16.
2 Wang T, Xiao F, Zhu X, et al. Energy consumption and environmental impact of rubberized asphalt pavement[J]. Journal of Cleaner Production, 2018, 180:139-158.
3 Zhou H, Holikatti S, Vacura P. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review[J]. Journal of Traffic and Transportation Engineering(English Edition), 2014, 1(1): 39-48.
4 王国清, 曹东伟, 王志斌, 等. 大掺量胶粉改性沥青胶结料流变性能对比研究[J]. 公路交通科技, 2022, 39(7): 7-14, 22.
Wang Guo-qing, Cao Dong-wei, Wang Zhi-bin, et al. Comparative study on rheological properties of asphalt binder modified with high content crumb rubber[J]. Journal of Highway and Transportation Research and Development, 2022, 39(7): 7-14, 22.
5 Navarro F J, Partal P, Martı́nez-Boza F, et al. Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens[J]. Fuel, 2004, 83(14): 2041-2049.
6 Han L, Zheng M, Wang C. Current status and development of terminal blend tyre rubber modified asphalt[J]. Construction and Building Materials, 2016, 128: 399-409.
7 朱洪洲, 苏春力, 唐乃膨, 等. 胶粉改性沥青排放物采样及定量分析方法[J/OL]. 吉林大学学报:工学版, 2023: 1-8.
Zhu Hong-zhou, Su Chun-li, Tang Nai-peng, et al. Sampling and quantitative analysismethod of emissions from crumb rubber modified asphalt[J/OL]. Journal of Jilin University(Engineering and Technology Edition), 2023,53: 1-8.
8 杨毅文, 袁浩, 马涛. 脱硫橡胶沥青溶胀原理及路用性能[J]. 公路交通科技, 2012, 29(2): 35-39.
Yang Yi-wen, Yuan Hao, Ma Tao. Swelling principle and pavement performance of desulfurized rubber asphalt[J]. Journal of Highway and Transportation Research Development, 2012, 29(2): 35-39.
9 董瑞琨, 梁文兵, 唐乃膨, 等. 废食用油预脱硫胶粉改性沥青组分与黏弹性研究[J]. 中国公路学报, 2019, 32(4): 226-234.
Dong Rui-kun, Liang Wen-bing, Tang Nai-peng, et al. Composition and viscoelasticity of asphalt modified with crumb rubber pre-desulfurized by waste cooking oil[J]. China Journal of Highway and Transport, 2019, 32(4): 226-234.
10 刘文昌, 党涛, 梁慧, 等. 胶粉活化对橡胶沥青性能的影响研究进展[J]. 市政技术, 2022, 40(9): 39-44, 49.
Liu Wen-chang, Dang Tao, Liang Hui, et al. Research progress of the effect of rubber powder activation on rubber asphalt properties[J]. Municipal Engineering Technology, 2022, 40(9): 39-44, 49.
11 葛豪. 无机纳米粒子/胶粉复配改性沥青制备与抗老化性能研究[D]. 重庆: 重庆交通大学土木工程学院, 2021.
Ge Hao. Study on preparation and aging resistance of asphalt modified by inorganic nanoparticles/rubber powder[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2021.
12 李宁, 申爱琴, 周彬, 等. 基于流变和微观分析的PR改性沥青老化性能评价[J]. 材料科学与工程学报, 2019, 37(5): 812-816.
Li Ning, Shen Ai-qin, Zhou Bin, et al. Evaluation of aging properties of PR modified asphalt based on rheological and microscopic analysis[J]. Journal of Materials Science and Engineering, 2019, 37(5): 812-816.
13 杨永强, 康秉铎, 郭海东, 等. 活化胶粉/SBS复合改性沥青短期老化性能[J]. 长安大学学报:自然科学版, 2021, 41(5): 23-33.
Yang Yong-qiang, Kang Bing-duo, Guo Hai-dong, et al. Short-term aging performance of activated rubber powder/SBS composite modified asphalt[J]. Journal of Chang 'an University(Natural Science Edition), 2021, 41(5): 23-33.
14 Yu H, Deng G, Wang D, et al. Warm asphalt rubber: a sustainable way for waste tire rubber recycling[J]. Journal of Central South University, 2020, 27(11):3477-3498.
15 Wang H, Liu X, Apostolidis P, et al. Review of warm mix rubberized asphalt concrete: towards a sustainable paving technology[J]. Journal of Cleaner Production, 2018, 177(10): 302-314.
16 陈启维. 四类温拌橡胶沥青的流变性能研究[J]. 市政技术, 2022, 40(3): 1-6.
Chen Qi-wei. Rheological properties of four types of warm-mixed rubber asphalt[J]. Municipal Engineering Technology, 2022, 40(3): 1-6.
17 徐永丽, 杨煦兰, 周吉森, 等. 温拌沥青的沥青烟成分及温拌剂抑烟性能研究[J]. 吉林大学学报:工学版, 2022, 52(12): 1-8.
Xu Yong-li, Yang Xu-lan, Zhou Ji-sen, et al. Study on the asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52 (12): 1-8.
18 Ma L, Varveri A, Jing R, et al. Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen[J]. Construction and Building Materials, 2021, 283:No.122632.
19 郭猛, 任鑫, 焦峪波, 等. 沥青及沥青混合料老化与抗老化研究综述[J]. 中国公路学报, 2022, 35(4): 41-59.
Guo Meng, Ren Xin, Jiao Yu-bo, et al. Review of aging and antiaging of asphalt and asphalt mixtures[J]. China Journal of Highway and Transport, 2022, 35(4): 41-59.
20 洪斌, 陆国阳, 高峻凌, 等. 路用聚氨酯胶结料的抗紫外老化性能[J]. 中国公路学报, 2020, 33(10): 240-253.
Hong Bin, Lu Guo-yang, Gao Jun-ling, et al. Anti-ultraviolet aging performance of polyurethane binders used in roads[J]. China Journal of Highway and Transport, 2020, 33(10): 240-253.
21 中国公路学报编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66.
Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research: 2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66.
22 Chang X, Zhang R, Xiao Y, et al. Mapping of publications on asphalt pavement and bitumen materials: A bibliometric review[J]. Construction and Building Materials, 2020, 234: No.117370.
23 钱春香, 解建光, 王鸿博. SBS和SEBS改性沥青及混合料抗老化性能[J]. 东南大学学报:自然科学版, 2005, 35(6): 945-949.
Qian Chun-xiang, Xie Jian-guang, Wang Hong-bo. Anti-aging capability of SBS and SEBS modified asphalt and mixture[J]. Journal of Southeast University(Natural Science Edition), 2005, 35(6): 945-949.
24 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(): 261-266, 272.
Zhao Ke-cheng, Chen Yu, Huang Kao-qu. Development of long-lasting antiaging additives for recycled asphalt binders[J]. Materials Review, 2019, 33(Sup.2): 261-266, 272.
25 张立科, 张玉贞. 加工工艺对沥青高温性能、抗老化性能和感温性能的影响研究[J]. 石油沥青, 2008, 22(6): 37-39.
Zhang Li-ke, Zhang Yu-zhen. Study on the influence of processing technology on high temperature, aging resistance and temperature sensing properties of asphalt[J]. Petroleum Pitch, 2008, 22(6): 37-39.
26 王筵铸, 王旭东, 张龙生, 等. 橡胶沥青配伍性及黏附性能研究[J]. 公路交通科技, 2019, 36(3): 34-41.
Wang Yan-zhu, Wang Xu-dong, Zhang Long-sheng, et al. Study on compatibility and adhesion property of rubber asphalt[J]. Journal of Highway and Transportation Research Development, 2019, 36(3): 34-41.
27 Li D, Leng Z, Wang H, et al. Structural and mechanical evolution of the multiphase asphalt rubber during aging based on micromechanical back-calculation and experimental methods[J]. Materials & Design, 2022, 215:No.110421.
28 Petersen J C. Transportation research circular E-C140: a review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships[R]. Washington DC: Transportation Research Board of the National Academies, 2009.
29 张丽宏. 橡胶沥青老化微观机理研究[C]∥《环境工程》2018年全国学术年会,中国合肥,2018.
Zhang Li-hong. Study on aging microscopic mechanism of rubber modified asphalt[C]∥Environmental Engineering 2018 National Academic Conference, Hefei, China, 2018.
30 Wang H, Liu X, Apostolidis P, et al. Numerical investigation of rubber swelling in bitumen[J]. Construction and Building Materials, 2019, 214: 506-515.
31 Tang N, Lv Q, Huang W, et al. Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder[J]. Construction and Building Materials, 2019, 205:87-96.
32 陈峰. 基质沥青和SBS改性沥青老化行为与机理研究[D]. 西安: 长安大学材料学院, 2012.
Chen Feng. Aging behavior and mechanism of base asphalt and SBS modified asphalt[D]. Xi'an: School of Materials, Chang 'an University, 2012.
33 陈钦庭, 王志祥. SBS改性沥青老化机理分析[J]. 武汉理工大学学报:交通科学与工程版, 2021, 45(6): 1145-1150.
Chen Qin-ting, Wang Zhi-xiang. Analysis of aging mechanism of SBS modified asphalt [J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2021, 45(6): 1145-1150.
34 宋家乐, 何璐, 王欣, 等. SBS改性沥青的RTFOT微观老化机理[J]. 公路交通科技, 2020, 37(2): 1-7.
Song Jia-le, He Lu, Wang Xin, et al. Microscopic aging mechanism of SBS modified asphalt in RTFOT[J]. Journal of Highway and Transportation Research and Development, 2020, 37(2): 1-7.
35 滕旭秋, 费占黎, 文华, 等. 多因素作用下橡胶沥青老化特性研究[J]. 兰州交通大学学报, 2016, 35(4): 1-5.
Teng Xu-qiu, Fei Zhan-li, Wen Hua, et al. Study on aging characteristics of rubber asphalt in consideration of multiple factors[J]. Journal of Lanzhou Jiaotong University, 2016, 35(4): 1-5.
36 何亮, 凌天清, 马育, 等. 橡胶沥青老化性能及特征研究[J]. 建筑材料学报, 2015, 18(4): 565-571.
He Liang, Ling Tian-qing, Ma Yu, et al. Research on asphalt rubber aging performance and characteristics[J]. Journal of Building Materials, 2015, 18(4): 565-571.
37 Geng J, Chen M, Xia C, et al. Quantitative determination for effective rubber content in aged modified asphalt binder[J]. Journal of Cleaner Production, 2022, 331:No.129978.
38 李宁利, 赵新坡, 孙吉书, 等. 橡胶沥青老化机理研究[J]. 公路交通科技, 2015, 32(7): 18-22.
Li Ning-li, Zhao Xin-po, Sun Ji-shu, et al. Study on aging mechanism of rubber modified asphalt[J]. Journal of Highway and Transportation Research Development, 2015, 32(7): 18-22.
39 黄明, 汪翔, 黄卫东. 橡胶沥青混合料疲劳性能的自愈合影响因素分析[J]. 中国公路学报, 2013, 26(4): 16-22.
Huang Ming, Wang Xiang, Huang Wei-dong. Analysis of influencing factors for self-healing of fatigue performance of asphalt rubber mixture[J]. China Journal of Highway and Transport, 2013, 26(4): 16-22.
40 Li D, Leng Z, Zou F, et al. Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber[J]. Journal of Cleaner Production, 2021, 303:No.127082.
41 何亮, 马育, 凌天清, 等. 橡胶改性沥青及老化特征微观尺度分析[J]. 功能材料, 2015, 46(21): 21093-21098.
He Liang, Ma Yu, Ling Tian-qing, et al. Microscale analysis of asphalt rubber and aging Characteristics[J]. Journal of Functional Materials, 2015, 46(21):21093-21098.
42 Amir G, Magdy A, Mohyeldin R. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging[J]. Transportation Research Record, 2015, 2505:84-91.
43 Zhang X, Xu C. The mechanism of asphalt modification by crumb rubber[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(3): 39-43.
44 Xu G, Kong P, Yu Y, et al. Rheological properties of rubber modified asphalt as function of waste tire rubber reclaiming degree[J]. Journal of Cleaner Production, 2022, 332:No.130113.
45 Wang S, Wang Q, Li S. Thermooxidative aging mechanism of crumb-rubber-modified asphalt[J]. Journal of Applied Polymer Science, 2016, 133(16): No.43323.
46 Jiao B, Pan B, Che T. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323:No.126360.
47 Presti D L. Recycled type rubber modified bitumens for road asphalt mixtures: a literature review[J]. Construction & Building Materials, 2013, 49(6): 863-881.
48 Shatanawi K M, Biro S, Geiger A, et al. Effects of furfural activated crumb rubber on the properties of rubberized asphalt[J]. Construction and Building Materials, 2012, 28(1): 96-103.
49 Ghavibazoo A. Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder[J]. International Journal of Pavement Engineering, 2013, 14(5): 517-530.
50 Ghavibazoo A, Ragab M. Mechanism of crumb rubber modifier dissolution into asphalt matrix and its effect on final physical properties of crumb rubber-modified binder[J]. Journal of the Transportation Research Board, 2013, 2370: 92-101.
51 刘延军, 叶志刚, 张玉贞. 橡胶粉改性沥青老化性能研究[J]. 施工技术, 2017, 46(11): 53-56.
Liu Yan-jun, Ye Zhi-gang, Zhang Yu-zhen. Study on aging performance of crumb rubber modified asphalt[J]. Municipal Engineering Technology, 2017, 46(11): 53-56.
52 Li B, Zhou J, Zhang Z, et al. Effect of short-term aging on asphalt modified using microwave activation crumb rubber[J]. Materials, 2019, 12(7):No.1039.
53 Dhalaan M A. Characterization and Design of Recycled Asphalt Concrete Mixture Using Indirect Tensile Test Methods[M]. Austin:University of Texas at Austin, 1982.
54 Ibrahim M R, Katman H Y, Karim M R, et al. A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen[J]. Advances in Materials Science and Engineering, 2013(1):1-8.
55 李炜光, 荣丽娟. 陕西常用沥青老化组分变化规律及其影响[J]. 石油沥青, 2012, 26(2): 28-32.
Li Wei-guang, Rong Li-juan. Changes of aging components and their effects on asphalt in Shaanxi Province[J]. Petroleum Bitumen, 2012, 26(2): 28-32.
56 刘军, 李和平, 杨彦海, 等. 辽河AH-90~#沥青老化组分变化研究[J]. 沈阳建筑工程学院学报:自然科学版, 2004(2): 127-129.
Liu Jun, Li He-ping, Yang Yan-hai, et al. Study on the changes of the aging components of Liaohe AH-90~# asphalt[J]. Journal of Shenyang Institute of Civil Engineering and Architecture(Natural Science Edition), 2004, (2):127-129.
57 常嵘, 王宏鑫. 沥青老化行为与老化机理研究[J]. 中国科技论文, 2020, 15(4): 420-424.
Chang Rong, Wang Hong-xin. Research on aging behavior and aging mechanism of asphalt[J]. China Science Paper, 2020, 15(4): 420-424.
58 王宝松, 金峰, 叶奋. 橡胶沥青微观结构热老化机理研究及影响因素分析[J]. 公路交通技术, 2013(6): 29-32.
Wang Bao-song, Jin Feng, Ye Fen. Research on thermal aging mechanism of microstructure of rubber asphalt and analysis for influence factors[J]. Technology of Highway and Transport, 2013(6): 29-32.
59 Cui Y, Glover C J, Braziunas J, et al. Further exploration of the pavement oxidation model – Diffusion-reaction balance in asphalt[J]. Construction and Building Materials, 2018, 161: 132-140.
60 Glover C J, Davison R R, Domke C H, et al. Development of a new method for assessing asphalt binder performance durability[R]. Federal Highway Administration Report, 2001.
61 Wang Q, Li S, Wu X, et al. Weather aging resistance of different rubber modified asphalts[J]. Construction and Building Materials, 2016, 106: 443-448.
62 Wang S, Huang W, Liu X, et al. Influence of high content crumb rubber and different preparation methods on properties of asphalt under different aging conditions: chemical properties, rheological properties, and fatigue performance[J]. Construction and Building Materials, 2022, 327: No.126937.
63 王强. 胶粉改性沥青老化过程中的结构与性能演化[D]. 上海: 上海应用技术学院材料科学与工程学院, 2016.
Wang Qiang. Structure and property evolution of crumb rubber modified Asphalt during aging process[D]. Shanghai: School of Materials Science and Engineering, Shanghai Institute of Applied Technology, 2016.
64 Qian G, Yang C, Huang H, et al. Resistance to ultraviolet aging of nano-sio2 and rubber powder compound modified asphalt[J]. Materials, 2020, 13(22): No.5067.
65 单宝龙, 孙敬军, 高会娟, 等. 四组分分析法研究老化改性沥青[J]. 当代化工, 2013, 42(6): 743-745.
Shan Bao-long, Sun Jing-jun, Gao Hui-juan, et al. Study on aging modified asphalt by four-component analysis[J]. Contemporary Chemical Industry, 2013, 42(6): 743-745.
66 Gao M, Fan C, Chen X, et al. Study on ultraviolet aging performance of composite modified asphalt based on rheological properties and molecular dynamics simulation[J]. Advances in Materials Science and Engineering, 2022, No.7894190.
67 Fini E H, Hosseinnezhad S, Oldham D J, et al. Investigating the effectiveness of liquid rubber as a modifier for asphalt binder[J]. Road Materials and Pavement Design, 2016, 17(4): 825-840.
68 Saha Chowdhury P, Mullapudi R S, Muppireddy A. An investigation on the effect of aging on chemical and mechanical properties of asphalt binders[J]. Journal of Materials in Civil Engineering, 2022, 34(10): No.04022252.
69 张洪刚, 谭华, 刘文昌, 等. 基质沥青化学组分对橡胶沥青性能影响的灰关联分析[J]. 公路, 2021, 66(4): 274-281.
Zhang Hong-gang, Tan Hua, Liu Wen-chang, et al. Grey relational analysis on asphalt component and rubberized asphalt performance[J]. Highway, 2021, 66(4): 274-281.
70 王珊珊, 郑华宇, 朱建国, 等. 固相萃取结合顶空GC-MS用于沥青老化机理研究[J]. 中国公路学报, 2021, 35(10): 1-18.
Wang Shan-shan, Zheng Hua-yu, Zhu Jian-guo, et al. Study on asphalt aging mechanism based on solid phase extraction combined with headspace GC-MS[J]. China Journal of Highway and Transport, 2021, 35(10): 1-18.
71 王强, 袁野, 欧阳春发, 等. 废旧橡胶改性沥青的老化研究现状[J]. 高分子通报, 2015(6): 19-28.
Wang Qiang, Yuan Ye, Ouyang Chun-fa, et al. Research status of aging of waste rubber modified asphalt[J]. Polymer Bulletin, 2015(6):19-28.
72 Kabir S F, Fini E H. Investigating aging and rejuvenation mechanism of biomodified rubberized bitumen[J]. Journal of Materials in Civil Engineering, 2021, 33(7):No.04021142.
73 温丽瑗, 张战军, 林海, 等. 基于正交试验的废轮胎胶粉改性沥青微观特性研究[J]. 合成橡胶工业, 2022, 45(4): 294-298.
Wen Li-yuan, Zhang Zhan-jun, Lin Hai, et al. Investigation on microscopic properties of crumb rubber modified asphalt based on orthogonal test[J]. China Synthetic Rubber Industry, 2022, 45(4): 294-298.
74 印佳, 毛雨珺, 李金亮, 等. 橡胶沥青紫外老化过程的探索[J]. 合成材料老化与应用, 2010, 39(3): 18-22.
Yin Jia, Mao Yu-jun, Li Jin-liang, et al. Investigation on the UV aging of asphalt rubber[J]. Aging and Application of Synthetic Materials, 2010, 39(3): 18-22.
75 Wang H, Liu X, Apostolidis P, et al. Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen[J]. Materials and Structures, 2020, 53(2): 1-15.
76 Wang S, Gao Y, Yan K, et al. Effect of long-term aging on waste tire rubber and amorphous poly alpha olefin compound modified asphalt binder and its mixtures[J]. Construction and Building Materials, 2021, 272: No.121667.
77 包得祥, 曹青霞, 张富奎, 等. 石墨烯对橡胶复合改性沥青抗老化性能的影响[J]. 建筑材料学报, 2020, 23(5): 1113-1120.
Bao De-xiang, Cao Qing-xia, Zhang Fu-kui, et al. Effect of graphene on anti-aging properties of rubber modified asphalt[J]. Journal of Building Materials, 2020, 23(5): 1113-1120.
78 于江, 赵群, 叶奋, 等. 热老化作用下橡胶改性沥青的低温流变性能[J]. 西南交通大学学报, 2021, 56 (1): 108-115.
Yu Jiang, Zhao Qun, Ye Fen, et al. Low temperature rheological performance analysis of rubber modified asphalt under heat aging process[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 108-115.
79 黄小燕, 王岚. 热氧老化作用下温拌胶粉改性沥青微观特性研究[J]. 建筑材料学报, 2020, 23(6): 1450-1457.
Huang Xiao-yan, Wang Lan. Investigation on microscale characteristics of warm mix rubber modified asphalt depending on thermal-oxidative aging[J]. Journal of Building Materials, 2020, 23(6): 1450-1457.
80 方彬彬, 叶园园, 李承烈, 等. 不同胶粉改性沥青抗老化性能对比[J]. 中外公路, 2017, 37(4): 285-289.
Fang Bin-bin, Ye Yuan-yuan, Li Cheng-lie, et al. Comparison of anti-aging properties of different crumb rubber modified asphalt[J]. Journal of China & Foreign Highway, 2017, 37(4): 285-289.
81 Wang L, Li X, Shen J, et al. Aging characterizations of modified asphalt binders based on low field nuclear magnetic resonance (LF-NMR)[J]. Materials, 2022, 15(22):No.8224.
82 Xie J, Zhang Y, Yang Y. Study on preparation method of terminal blend rubberized asphalt binder[J]. Frontiers in Materials, 2020(7):No. 00279.
83 Zhou Y, Du L, Liu X, et al. Microscopic performance of modified asphalt based on aging[J]. Construction and Building Materials, 2021, 279: No.122429.
84 胡栋梁, 顾兴宇, 孙丽君, 等. 基于量子化学的沥青热老化与紫外老化机理[J]. 交通运输工程学报, 2023, 23(2): 141-152.
Hu Dong-liang, Gu Xing-yu, Sun Li-jun, et al. Quantum chemistry—based thermal and UV aging mechanism of asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 141-152.
85 Zhang F, Hu C. The research for structural characteristics and modification mechanism of crumb rubber compound modified asphalts[J]. Construction and Building Materials, 2015, 76: 330-342.
86 唐乃膨. 溶解性胶粉改性沥青的反应机理与流变性能研究[D]. 上海: 同济大学交通运输工程学院, 2017.
Tang Nai-peng. Interaction mechanism and rheological properties of terminal blend rubberized asphalt[D]. Shanghai: School of Transportation Engineering, Tongji University, 2017.
87 汪大受. 凝胶色谱法[J]. 微生物学通报, 1978(3): 33-43.
Wang Da-shou. Gel permeation chromatography[J]. Microbiology China, 1978(3): 33-43.
88 Shen J, Amirkhanian S, Xiao F. High-pressure gel permeation chromatography of aging of recycled crumb rubber-modified binders with rejuvenating agents[J]. Journal of the Transportation Research Board, 2006, 1962(1): 21-27.
89 Zhou T, Zhou J, Li Q, et al. Aging Properties and Mechanism of Microwave-Activated Crumb Rubber Modified Asphalt Binder[J]. Frontiers in Materials, 2020(7): No.603938.
90 Lee S, Hu J, Kim H, et al. Aging analysis of rubberized asphalt binders and mixes using gel permeation chromatography[J]. Construction and Building Materials, 2011, 25(3): 1485-1490.
91 Baek S, Kim H, Doh Y, et al. Estimation of high-temperature properties of rubberized asphalt using chromatograph[J]. KSCE Journal of Civil Engineering, 2009, 13(3): 161-167.
92 Tang N, Dong R. Anti-Aging potential of sulphur in terminal blend rubberized asphalt binder[J]. Construction and Building Materials, 2020, 250:No.118858.
93 Ye W, Jiang W, Shan J, et al. Research on molecular weight distribution and rheological properties of bitumen during short-term aging[J]. Journal of Materials in Civil Engineering, 2020, 32(3): No.04019377.
94 段春婷, 郑冬芳, 刘均庆, 等. 中间相沥青表征研究进展[J]. 新型炭材料, 2018, 33(3): 193-202.
Duan Chun-ting, Zheng Dong-fang, Liu Jun-qing, et al. Research progress on the characterization of mesophase pitch[J]. New Carbon Materials, 2018, 33(3): 193-202.
95 Xiang Y, Xie Y, Long G, et al. Ultraviolet irradiation of crumb rubber on mechanical performance and mechanism of rubberised asphalt[J]. Road Materials and Pavement Design, 2019, 20(7): 1624-1637.
96 王明, 刘黎萍, 吴后选. SBS改性沥青显微相态与宏观性能相关性研究[J]. 建筑材料学报, 2016, 19(1): 119-123, 142.
Wang Ming, Liu Li-ping, Wu Hou-xuan. Correlation between Phase Microstructure and Macroscopic Performance of SBS Modified Bitumen[J]. Journal of Building Materials, 2016, 19(1): 119-123, 142.
97 梁庆, 郑云, 张关发, 等. 废机油再生SBS改性沥青性能及再生机理[J]. 科学技术与工程, 2023, 23(2): 777-784.
Liang Qing, Zheng Yun, Zhang Guan-fa, et al. Performance and mechanism of styrence-butadiene-styrene (SBS) modified asphalt regenerated from waste engine oil[J]. Science Technology and Engineering, 2023, 23(2): 777-784.
98 蔡斌, 余功新, 李彦伟, 等. 超高掺量胶粉改性沥青性能[J]. 重庆交通大学学报:自然科学版, 2021, 40 (9): 117-123.
Cai Bin, Yu Gong-xin, Li Yan-wei, et al. Performance of ultra-high content rubber modified asphalt[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2021, 40(9): 117-123.
99 Chang M, Zhang Y, Pei J, et al. Low-temperature rheological properties and microscopic characterization of asphalt rubbers containing heterogeneous crumb rubbers[J]. Materials, 2020, 13(18): No.4120.
100 王岚, 陈刚, 邢永明, 等. 老化对胶粉和SBS改性沥青流变性能的影响[J]. 建筑材料学报, 2015, 18(3): 499-504.
Wang Lan, Chen Gang, Xing Yong-ming, et al. Effect of aging on rheological properties of crumb rubber and SBS modified asphalt[J]. Journal of Building Materials, 2015, 18(3): 499-504.
101 Dong R, Zhao M, Xia W, et al. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature[J]. Waste Management, 2018, 79: 516-525.
102 Zadshir M, Ploger D, Yu X K, et al. Chemical, thermophysical, rheological, and microscopic characterisation of rubber modified asphalt binder exposed to UV radiation[J]. Road Materials and Pavement Design, 2020, 21: 123-139.
103 Ma W, Huang T, Guo S, et al. Atomic force microscope study of the aging/rejuvenating effect on asphalt morphology and adhesion performance[J]. Construction and Building Materials, 2019, 205: 642-655.
104 崔亚楠, 于庆年, 韩吉伟, 等. 复杂气候条件下胶粉改性沥青的低温性能[J]. 材料导报, 2018, 32(12): 2078-2084.
Cui Ya-nan, Yu Qing-nian, Han Ji-chao, et al. Low temperature performance of rubber-modified asphalt under complex climate[J]. Materials Review, 2018, 32(12): 2078-2084.
105 Wang L, Liu Y, Zhang L. Micro/nanoscale study on the effect of aging on the performance of crumb rubber modified asphalt[J]. Mathematical Problems in Engineering, 2020,No:1924349 .
106 Ren M, Li Y, Cheng P, et al. Effect of modifier on low-temperature reversible aging behavior of asphalt binder and its morphology analysis[J]. Construction and Building Materials, 2022, 351:No.128943.
107 丁湛, 王爱波, 栗慧峰, 等. 胶粉颗粒变化对橡胶沥青粘度的影响分析[J]. 应用化工, 2023, 52(2): 350-354.
Ding Zhan, Wang Ai-bo, Li Hui-feng, et al. Effect analysis of particle changes of crumb rubber on viscosity of rubber asphalt[J]. Applied Chemical Industry, 2023, 52(2): 350-354.
108 周新星. 高掺量橡胶化生物沥青的相分离机理研究[J]. 公路, 2022, 67(7): 347-353.
Zhou Xin-xing. Study on phase separation mechanism of high content rubberized bio-asphalt[J]. Highway, 2022, 67(7): 347-353.
109 丁倩. 基于显微光谱技术的复合纤维成份定性分析方法研究[D]. 上海: 东华大学纺织学院, 2014.
Ding Qian. Investigation into the qualitative analysis of composite fiber through the detection of the microscopy spectrometry[D]. Shanghai: Textile College, Donghua University, 2014.
110 周艳明. 红外显微成像结合主成分分析对聚烯烃紫外光氧化的研究[D]. 北京: 北京化工大学理学院, 2010.
Zhou Yan-ming. FTIR imaging coupled with principal component analysis for study of photooxidation of polyolefin[D]. Beijing: School of Science, Beijing University of Chemical Technology, 2010.
111 周鑫. 聚合物复合材料相容性的傅立叶变换红外光谱显微成像研究[D]. 北京: 北京化工大学理学院, 2008.
Zhou Xin. Miscibility behavior of polymer composites using fourier transform infrared microscopic imaging[D]. Beijing: School of Science, Beijing University of Chemical Technology, 2008.
112 Virginie M, Jerome L, Francoise D, et al. Infrared microscopy investigation of oxidation and phase evolution in bitumen modified with polymers[J]. Fuel, 2008, 87: 1270-1280.
113 Abdelmagid A A A, Feng C. Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash[J]. Petroleum Science and Technology, 2019, 37(13): 1557-1565.
114 张智豪, 李波, 魏永政. 短期老化对胶粉改性沥青高温性能的影响[J]. 现代化工, 2018, 38(9): 105-109.
Zhang Zhi-hao, Li Bo, Wei Yong-zheng. Effect of short-term aging on high-temperature properties of crumb rubber modified asphalt[J]. Modern Chemical Industry, 2018, 38(9): 105-109.
115 Chen R, Zhu H, Kong L, et al. Stage-aging characteristics and stages division of crumb rubber modified asphalt binder[J]. Construction and Building Materials, 2023, 367: 129712.
116 沈燕, 康爱红, 王超, 等. 橡胶沥青混合料中橡胶沥青老化程度的表征[J]. 合成橡胶工业, 2017, 40(6): 467-472.
Shen Yan, Kang Ai-hong, Wang Chao, et al. Characterization of aging degree of asphalt rubber in rubber asphalt mixture[J]. China Synthetic Rubber Industry, 2017, 40(6): 467-472.
117 Wang S, Huang W, Lin P. Low-temperature and fatigue characteristics of degraded crumb rubber–modified bitumen before and after aging[J]. Journal of Materials in Civil Engineering, 2022, 34(3): No.04021493.
118 谭忆秋, 符永康, 纪伦, 等. 橡胶沥青低温评价指标[J]. 哈尔滨工业大学学报, 2016, 48(3): 66-70.
Tan Yi-qiu, Fu Yong-kang, Ji Lun, et al. Low-temperature evaluation index of rubber asphalt[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 66-70.
119 Wang R, Xu G, Chen X, et al. Evaluation of aging resistance for high-performance crumb tire rubber compound modified asphalt[J]. Construction and Building Materials, 2019, 218: 497-505.
120 Chen Z, Wang T, Pei J, et al. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure[J]. Journal of Cleaner Production, 2019, 234: 1262-1274.
121 肖鹏, 王颖倩, 史杉杉. 橡胶沥青老化特性的线性分析与综合评价[J]. 公路, 2014, 59(11): 170-174.
Xiao Peng, Wang Ying-qian, Shi Shan-shan. Study of the adhesiveness between epoxy asphalt and granite aggregate[J]. Highway, 2014, 59(11): 170-174.
122 Chipps J F, Davison R R, Glover C J. A model for oxidative aging of rubber-modified asphalts and implications to performance analysis[J]. Energy & Fuels, 2001, 15(3): 637-647.
123 Ghavibazoo A, Abdelrahman M, Ragab M. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging[J]. Transportation Research Record, 2015,2505: 84-91.
124 Yuan D, Jiang W, Xiao J, et al. Assessment of the aging process of finished product-modified asphalt binder and its aging mechanism[J]. Journal of Materials in Civil Engineering, 2022, 34(8): No.04022174.
125 肖鹏, 郑佳辉, 丁燕. 基于流变指标的胶粉复合改性沥青热氧老化程度评估[J]. 材料科学与工程学报, 2019, 37(1): 113-118.
Xiao Peng, Zheng Jia-hui, Ding Yan. Evaluation of thermal aging degrees of rubber compound modified asphalt based on rheological indices[J]. Chinese Journal of Materials Science and Engineering, 2019, 37(1): 113-118.
126 Wang S, Huang W, Kang A. Laboratory evaluation of the properties of high-cured crumb rubber modified asphalt containing sulfur and polymer after the oxidative aging procedure[J]. Construction and Building Materials, 2021, 304: No.124611 .
127 Wang F, Xiao Y, Cui P, et al. Correlation of asphalt performance indicators and aging degrees: a review[J]. Construction and Building Materials, 2020, 250: No.118824.
128 于新, 孙文浩, 罗怡琳, 等. 橡胶沥青温度敏感性评价方法研究[J]. 建筑材料学报, 2013, 16(2): 266-270.
Yu Xin, Sun Wen-hao, Luo Yi-lin, et al. Research on the evaluation index of temperature sensitivity of CRMA[J]. Journal of Building Materials, 2013, 16(2): 266-270.
129 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J]. 长安大学学报:自然科学版, 2019, 39(2): 10-18.
Zhang Heng-long, Xu Guo-qing, Zhu Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(2): 10-18.
130 王明, 刘黎萍. 纳观尺度沥青相态力学特性老化行为[J]. 交通运输工程学报, 2019, 19(6): 1-13.
Wang Ming, Liu Li-ping. Aging behaviors of nanoscale mechanical properties of asphalt phases[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 1-13.
131 杨震, 张肖宁, 虞将苗, 等. 基质沥青老化前后多尺度特性研究[J]. 建筑材料学报, 2018, 21(3): 420-425.
Yang Zhen, Zhang Xiao-ning, Yu Jiang-miao, et al. Study on multi-scale characteristics of matrix asphalt before and after aging[J]. Journal of Building Materials, 2018, 21(3): 420-425.
132 田小革, 郑健龙, 张起森. 老化对沥青结合料粘弹性的影响[J]. 交通运输工程学报, 2004(1): 3-6.
Tian Xiao-ge, Zheng Jian-long, Zhang Qi-sen. Effect of aging on viscoelastic performance of asphalt binder[J]. Journal of Traffic and Transportation Engineering, 2004(1): 3-6.
133 Li Y, Feng J, Wu S, et al. Review of ultraviolet ageing mechanisms and anti-ageing methods for asphalt binders[J]. Journal of Road Engineering, 2022, 2(2): 137-155.
134 汪婷. LDHs对沥青抗老化性能的影响研究[J]. 市政技术, 2021, 39 (12): 124-128.
Wang Ting. Effect of LDHs on aging resistance of asphalt[J]. Municipal Engineering Technology, 2021, 39 (12): 124-128.
135 金大勇, 颜川奇, 易宏宇, 等. 老化对改性沥青宽温度域黏弹特性的影响[J]. 建筑材料学报, 2022, 25(12): 1321-1328.
Jin Da-yong, Yan Chuan-qi, Yi Hong-yu, et al. Influence of aging on the wide-temperature-range viscoelasticity of modified asphalt[J]. Journal of Building Materials, 2022, 25 (12): 1321-1328.
136 袁朝圣. 热光氧耦合条件下SBS改性沥青老化与评价[D]. 长沙: 长沙理工大学交通运输工程学院, 2021.
Yuan Chao-sheng. Aging and evaluation of SBS modified asphalt under thermo-photo-oxygen coupling[D]. Changsha: School of Transportation Engineering, Changsha University of Science and Technology, 2021.
137 白献萍, 钱国平, 韦慧, 等. 紫外线光照辐射的SBS改性沥青老化研究现状[J]. 材料科学与工程学报, 2019, 37(5): 855-859.
Bai Xian-ping, Qiang Guo-ping, Wei Hui, et al. Review on SBS modified asphalt aging under ultraviolet light radiation[J]. Chinese Journal of Materials Science and Engineering, 2019, 37(5): 855-859.
138 常琨, 王选仓. SBS改性沥青RTFOT老化黏附性量化评价方法研究[J]. 公路交通科技, 2019, 36(12): 29-36.
Chang Kun, Wang Xuan-cang. Study on quantitative evaluation method of adhesion of SBS modified asphalt RTFOT aging[J]. Journal of Highway and Transportation Research and Development, 2019, 36(12): 29-36.
139 Diab A, You Z, Li X, et al. Rheological models for non-newtonian viscosity of modified asphalt binders and mastics[J]. Egyptian Journal of Petroleum, 2020, 29(2): 105-112.
[1] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[2] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[3] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[4] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[5] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[6] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[7] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[8] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[9] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[10] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[11] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[12] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[13] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[14] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[15] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!