吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1355-1367.doi: 10.13229/j.cnki.jdxbgxb.20220845

• 交通运输工程·土木工程 • 上一篇    

近断层大跨RC轻柔拱桥纵向阻尼器减震研究

邵长江1,2(),崔皓蒙1,漆启明1,庄卫林1,2   

  1. 1.西南交通大学 土木工程学院,成都 610031
    2.西南交通大学 陆地交通地质灾害防治技术国家工程研究中心,成都 610031
  • 收稿日期:2022-07-02 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:邵长江(1970-),男,教授,博士.研究方向:桥梁工程抗震. E-mail:shao_chj@126.com
  • 基金资助:
    国家自然科学基金项目(51978581);四川省应用基础研究重点项目(2017JY0059)

Longitudinal seismic mitigation of near⁃fault long⁃span RC soft⁃lighten arch bridge based on viscous damper

Chang-jiang SHAO1,2(),Hao-meng CUI1,Qi-ming QI1,Wei-lin ZHUANG1,2   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.National Engineering Research Center of Geological Disaster Prevention Technology in Land Transportation,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2022-07-02 Online:2024-05-01 Published:2024-06-11

摘要:

为提升高烈度近断层地区大跨轻柔拱桥的纵向抗震性能,通过非线性时程分析,探讨了某上承式RC拱桥黏滞阻尼器的适用性。对比该新型拱桥与常规RC拱桥结构体系、动力特性的差异,明确了其地震损伤路径,优化了阻尼器布置方案,探究了近远断层地震动下墩柱响应规律及减震效果,考虑了高阶振型的影响,结合易损性说明了减震方案的合理性。结果表明:此类轻柔拱桥在近断层纵竖向设计地震下,中等高度立柱最易损伤,而拱肋保持弹性;在桥台及高柱处布置阻尼器的减震效果最佳;受高阶振型影响,设置阻尼器后的高墩柱墩身剪力及弯矩包络“S”形分布更显著;在近场脉冲及远场长周期地震下的结构响应更大,受位移脉冲的影响阻尼器滞回环会出现突变,但耗能显著、减震效果突出;4类近远场地震动下黏滞阻尼器均可有效降低拱桥墩柱的损伤概率,适用性较优,但需满足大出力、大量程的地震需求。

关键词: 桥梁工程, 大跨轻柔拱桥, 近远断层地震动, 减震性能, 高阶振型, 易损性分析

Abstract:

To improve the longitudinal seismic performance of long-span soft-lighten arch bridges in high-intensity near-fault regions, the applicability of viscous dampers was discussed for an upper-deck RC arch bridge through the nonlinear time history analysis. The structural system and dynamic characteristics of the novel arch bridge were compared with those of the conventional RC arch bridge. The seismic damage path was explored and the layout schemes of the viscous damper were optimized. The structural response and the mitigation due to dampers were investigated under the near-field and far-field ground motions. The influence of high-order mode was analyzed. The rationality of the mitigation design was investigated based on fragility analysis. The results show that the medium height column is vulnerable to near-field longitudinal and vertical design earthquake, while the arch rib remains elastic. The overall mitigation effect is the best when the dampers are located on the abutments and high columns. The S-shaped distribution of shear force and bending moment envelope of high column with damper is more obvious than the others due to the influence of high-order mode. The structural responses are larger with significant energy dissipation and efficient mitigation under near-field impulse and far-field long-period earthquakes than the other conditions, and the hysteresis loop of the damper would suddenly change under the influence of displacement pulse. The damage probability of mitigation design with excellent application is effectively decreased under four types of near-field and far-field earthquakes. However, the damper should meet the seismic requirements of large force and stroke.

Key words: bridge engineering, soft-lighten long-span arch bridge, near-field and far-field ground motions, seismic mitigation performance, high-order mode, fragility analysis

中图分类号: 

  • U448

图1

桥梁立面及关键截面示意图(单位:m)"

图2

桥梁有限元模型及连接单元本构模型"

表1

连接单元本构模型参数"

连接单元连接属性
板式橡胶支座剪切刚度k/(kN·m-1
P2、P7、P8、P15、P16及P21处P5、P6、P17及P18处P3、P4、P19及P20处
367561259198
四氟滑板支座初始刚度k0/(kN·m-1临界滑动摩擦力Fmax/kN等效刚度keff/(kN·m-1
675040208
黏滞阻尼器阻尼系数C/(kN·(m·s-1-α速度指数α
500~60000.2~0.8

表2

典型纵向振动模态特性"

序号周期/s质量参与系数/%振型特征
13.97060.98主拱纵向弯曲、主梁纵向平动
52.0742.12梁拱反对称竖弯
110.8371.94主跨梁拱反对称竖弯
430.4030.96墩P6、P7、P16、P19纵向弯曲
500.3500.75墩P7、P15纵向弯曲
670.2610.90墩P5、P8纵向弯曲
810.2110.75墩P5、P14纵向弯曲
980.1733.41主跨梁拱反对称竖弯
1020.16111.36主跨梁拱纵向平动
2000.0061.03墩P1及主拱拱肋根部纵向弯曲

表3

地震动基本参数"

地震动断层距/kmPGA/gPGV/(m?s-1PGD/mPGV/PGA/sPGD/PGV/s
NP5.090.350.760.570.220.76
NF7.290.270.250.090.090.37
FF50.100.120.130.030.110.20
FL36.920.110.120.080.110.66

图3

输入地震动的时程及反应谱曲线"

图4

拱桥地震损伤"

图5

拱桥纵向地震损伤"

图6

墩顶及支座位移响应"

图7

墩底内力响应"

图8

墩顶及支座位移响应"

表4

桥梁墩顶及支座位移响应的减震率"

地震动墩顶位移减震率/%支座位移减震率/%
P1P5P18P22P1P5P18P22
NP2848481082979883
NF106476-741959745
FF48282-640979336
FL-16971677949867

图9

墩底剪力及弯矩响应"

表5

桥梁墩底剪力及弯矩响应的减震率"

地震动墩底剪力减震率/%墩底弯矩减震率/%
P1P5P18P22P1P5P18P22
NP3056452853552
NF12294-5106942-7
FF2047-31-956512-6
FL-410135-263466

图10

墩身位移及内力响应包络"

图11

拱桥墩柱损伤状态"

图12

结构总能量图"

图13

黏滞阻尼器滞回曲线"

图14

黏滞阻尼器的出力及变形时程曲线"

表6

立柱P18损伤指标"

损伤状态判断依据曲率/m-1曲率延性比
轻微损伤纵筋首次屈服2.40E-031.000
中等损伤截面等效屈服3.01E-031.256
严重损伤混凝土压应变达到0.0047.75E-033.235
完全破坏截面破坏1.58E-026.573

图15

各类地震动加速度反应谱"

图16

立柱P18地震易损性曲线"

1 陈宝春,刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41.
Chen Bao-chun, Liu Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41.
2 惠迎新,毛明杰,刘海峰,等. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报: 工学版, 2018, 48(6): 1725-1734.
Hui Ying-xin, Mao Ming-jie, Liu Hai-feng, et al. Influence of structural seismic response of bridges crossing active fault[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1725-1734.
3 云迪,刘贺,张素梅. 中承式钢管混凝土拱桥弹塑性地震时程分析[J]. 吉林大学学报: 工学版, 2014, 44(6): 1633-1638.
Yun Di, Liu He, Zhang Su-mei. Elastic-plastic time-history analysis of half-through CFST arch bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1633-1638.
4 李小珍,刘鸣,杨得海,等. 大跨度上承式钢桁架拱桥的地震损伤演化模拟[J]. 西南交通大学学报, 2020, 55(6): 1207-1214, 1223.
Li Xiao-zhen, Liu Ming, Yang De-hai, et al. Seismic damage evolution simulation of long-span deck steel truss arch bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1207-1214, 1223.
5 卓卫东,颜全哲,吴梅容,等. 中承式钢管混凝土拱桥地震易损性分析[J]. 铁道学报, 2019, 41(5): 126-132.
Zhuo Wei-dong, Yan Quan-zhe, Wu Mei-rong, et al. Seismic fragility analysis of half-through concrete filled steel tubular arch bridge[J]. Journal of the China Railway Society, 2019, 41(5): 126-132.
6 Alvarez J J, Aparicio A C, Jara J M, et al. Seismic assessment of long-span arch bridge considering the variation in axial forces induced by earthquakes[J]. Engineering Structures, 2012, 34: 69-80.
7 Deng K, Yan G, Yang H,et al. RC arch bridge seismic performance evaluation by sectional N-M interaction and coupling effect of brace beams[J]. Engineering Structures, 2019, 183: 18-29.
8 梁雄,李乾坤,苏成. 某跨海大桥主桥总体方案与减隔震研究[J]. 振动与冲击, 2019, 38(9): 252-259, 284.
Liang Xiong, Li Qian-kun, Su Cheng. Study on the overall scheme and isolation of the main bridge of a sea-crossing bridge[J]. Journal of Vibration and Shock, 2019, 38(9): 252-259, 284.
9 彭益华,何旭辉,敬海泉,等. 半漂浮体系钢管混凝土拱桥黏滞阻尼器减震研究[J]. 铁道科学与工程学报, 2021, 18(6): 1504-1512.
Peng Yi-hua, He Xu-hui, Jing Hai-quan,et al. Study on seismic reduction of viscous dampers in semi-floating CFST arch bridge[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1504-1512.
10 李小珍,刘桢杰,辛莉峰,等. 考虑行波效应的刚架系杆拱桥减隔震分析[J]. 铁道工程学报, 2015, 32(3): 46-51.
Li Xiao-zhen, Liu Zhen-jie, Xin Li-feng,et al. Analysis of seismic isolation for frame tied bridge under the effect of traveling wave[J]. Journal of Railway Engineering Society, 2015, 32(3): 46-51.
11 张永亮,董阳,朱尚清,等. 大跨上承式铁路钢桁拱桥减震性能研究[J]. 铁道工程学报, 2016, 33(1): 75-79.
Zhang Yong-liang, Dong Yang, Zhu Shang-qing,et al. Research on damping performance of the long-span deck type steel truss railway arch bridge[J]. Journal of Railway Engineering Society, 2016, 33(1): 75-79.
12 European Committee for Standardization. 1:2004. Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings [S].
13 徐龙军,胡进军,谢礼立. 特殊长周期地震动的参数特征研究[J]. 地震工程与工程振动, 2008, 28(6): 20-27.
Xu Long-jun, Hu Jin-jun, Xie Li-li. On characteristics of ground motion parameters for special long-period ground motions[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(6): 20-27.
14 邵长江,漆启明,韦旺,等. 设置黏滞阻尼器的超高墩大跨铁路连续钢桁梁桥纵向减震性能研究[J]. 中国铁道科学, 2021, 42(6): 27-38.
Shao Chang-jiang, Qi Qi-ming, Wei Wang, et al. Study on longitudinal seismic mitigation performance of a long-span railway continuous steel truss girder bridge with ultra-high piers using fluid viscous dampers[J]. China Railway Science, 2021, 42(6): 27-38.
15 陈永祁,耿瑞琦,马良喆. 桥梁用液体粘滞阻尼器的减震设计和类型选择[J]. 土木工程学报, 2007, 40(7): 55-61.
Chen Yong-qi, Geng Rui-qi, Ma Liang-zhe. Design and selection of fluid viscous devices for shock control of bridges[J]. China Civil Engineering Journal, 2007, 40(7): 55-61.
16 Cornell C A, Jalayer F, Hamburger R O,et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4): 526-533.
17 Earthquake Loss Estimation Methodology Technical Manual, HAZUS 99 (1999) [C]. Developed by the federal emergency management agency Washington, D.C. through agreements with the National Institute of Building Sciences Washington, DC, 1999.
18 漆启明,邵长江,胡晨旭,等. 空心墩地震损伤评估及性能水准量化研究[J]. 土木工程学报, 2020, 53(11): 116-128.
Qi Qi-ming, Shao Chang-jiang, Hu Chen-xu, et al. Study on seismic damage assessment and performance level quantification of hollow pier[J]. China Civil Engineering Journal, 2020, 53(11): 116-128.
[1] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[2] 张洪,朱志伟,胡天宇,龚燕峰,周建庭. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 749-760.
[3] 韩智强,谢刚,卓亚娟,骆佐龙,李华腾. 基于车轮-桥面相干激励的大跨连续梁桥振动响应[J]. 吉林大学学报(工学版), 2024, 54(2): 436-444.
[4] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[5] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[6] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[7] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[8] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[9] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[10] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[11] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[12] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[13] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[14] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[15] 王俊,李加武,王峰,张久鹏,黄晓明. 简化U形峡谷风速分布及其对悬索桥抖振响应的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1658-1668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!