吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1474-1482.doi: 10.13229/j.cnki.jdxbgxb.20230636

• 农业工程·仿生工程 • 上一篇    

受螳螂虾虾螯启发的仿生螺旋结构力学特性

齐迎春(),张照辉,陈立新,王清扬,郭雪,于征磊(),张志辉   

  1. 吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2023-06-21 出版日期:2025-04-01 发布日期:2025-06-19
  • 通讯作者: 于征磊 E-mail:qiyc@jlu.edu.cn;zlyu@jlu.edu.cn
  • 作者简介:齐迎春(1979-),女,教授,博士. 研究方向:仿生结构设计.E-mail: qiyc@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4600500);国家自然科学基金面上项目(51975246);吉林省科技发展计划项目(20230508045RC);吉林省发改委项目(2023C041-4);重庆市科技项目(CSTB2022NSCQ-MSX0225)

Energy absorption characteristics of bionic helical structures inspired by mantis shrimp

Ying-chun QI(),Zhao-hui ZHANG,Li-xin CHEN,Qing-yang WANG,Xue GUO,Zheng-lei YU(),Zhi-hui ZHANG   

  1. Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2023-06-21 Online:2025-04-01 Published:2025-06-19
  • Contact: Zheng-lei YU E-mail:qiyc@jlu.edu.cn;zlyu@jlu.edu.cn

摘要:

受螳螂虾虾螯微观Bouligand结构启发,本文以六边形、圆形、负泊松比、四边形4种胞元作为层间基础结构,建立了4种仿生螺旋结构以及4种对比结构。以热塑性聚氨酯材料为基材,运用3D打印技术进行结构制备。基于准静态压缩试验和数值模拟探究了上述8种结构的吸能性能。结果表明:4种仿生螺旋结构的吸能特性较好,其中仿生六边形螺旋结构比吸能可达531.65 mJ/g。与对应对比结构相比,4种仿生螺旋结构比吸能分别提升64.72%、32.39%、55.84%、25.14%,这表明层间螺旋堆叠分布有效增强了结构的吸能特性,结构变形破坏将会吸收更多的能量。

关键词: 工程仿生学, 螳螂虾虾螯, 仿生螺旋结构, 3D打印, 准静态压缩, 吸能特性

Abstract:

Inspired by the microscopic Bouligand structure of mantis shrimp, this paper used four cells (hexagonal, circular, quadrilateral and negative Poisson's ratio) as interlayer basic structures, and established four bionic helical structures and four contrast structures. Using the thermoplastic polyurethane material as the base material, the above structures were fabricated by 3D printing technology. Based on the quasi-static compression tests and numerical simulations, the energy absorption performance of the above eight structures was investigated. The results showed that the energy absorption characteristics of the four bionic helical structures were better, and the specific energy absorption of the bionic hexagon helical structure could reach 531.65 mJ/g. Compared with the corresponding contrast structure, the specific energy absorption of the four bionic helical structures increased by 64.72%, 32.39%, 55.84% and 25.14% respectively, which indicated that the helical stacking distribution between layers effectively increased the energy absorption characteristics of the structures. The deformation and failure of the structures would absorb more energy.

Key words: engineering bionics, mantis shrimp, bioinspried helical structures, 3D printing, quasi-static compression, energy absorption characteristics

中图分类号: 

  • TB17

图1

生物灵感启发的螺旋结构"

图2

仿生螺旋结构及其对比结构"

图3

拉伸试验曲线及拉伸试验设置"

图4

有限元模型和网格无关性分析"

图5

试验和仿真力位移曲线"

图6

试验和仿真吸能与比吸能"

图7

仿生结构变形模式"

图8

仿真多角度力位移曲线"

图9

多角度结构比吸能"

[1] Tan H L, He Z C, Li K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: No.111415.
[2] 于征磊, 信仁龙, 陈立新, 等. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报: 工学版, 2021, 51(3): 1140-1145.
Yu Zheng-lei, Xin Ren-long, Chen Li-xin, et al. Load bearing characteristics of honeycomb protection structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[3] Yang X F, Sun Y X, Yang J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11.
[4] Liang H Y, Hao W Q, Xue G L, et al. Parametric design strategy of a novel self-similar hierarchical honeycomb for multi-stage energy absorption demand[J]. International Journal of Mechanical Sciences, 2022, 217:No. 107029.
[5] Zhang Y, Wang J, Wang C H, et al. Crashworthiness of bionic fractal hierarchical structures[J]. Materials & Design, 2018, 158: 147-159.
[6] Zhang W, Yu T X, Xu J. Uncover the underlying mechanisms of topology and structural hierarchy in energy absorption performances of bamboo-inspired tubular honeycomb[J]. Extreme Mechanics Letters, 2022, 52: No.101640.
[7] Yang W, Chen Irene H, Bernd G, et al. Natural flexible dermal armor[J]. Advanced Materials, 2013, 25(1): 31-48.
[8] Quan H C, Yang W, Eric S, et al. Novel defense mechanisms in the armor of the scales of the "living fossil" coelacanth fish[J]. Advanced Functional Materials, 2018, 28(46): No.1804237.
[9] 韩铖. 仿生轻质抗冲击结构材料的设计、制备与性能研究[D]. 南京: 南京航空航天大学机电学院,2018.
Han Cheng. Research on bio-inspired lightweight anti-impact structure and its mechanical analysis[D]. Nanjing:College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2018.
[10] Meng Q H, Gao Y, Shi X H, et al. Three-dimensional crack bridging model of biological materials with twisted Bouligand structures[J]. Journal of the Mechanics and Physics of Solids, 2022, 159:No.104729.
[11] Lian J, Wang J. Microstructure and mechanical anisotropy of crab cancer magister exoskeletons[J]. Experimental Mechanics, 2014, 54(2): 229-239.
[12] Ma C L, Gu D D, Lin K J, et al. Selective laser melting additive manufacturing of cancer pagurus's claw inspired bionic structures with high strength and toughness[J]. Applied Surface Science, 2019, 469: 647-656.
[13] Kellersztein I, Cohen S R, Bar-On B, et al. The exoskeleton of scorpions' pincers: structure and micro-mechanical properties[J]. Acta Biomaterialia, 2019, 94: 565-573.
[14] Israel G, Israel K, Daniel W H. Nested helicoids in biological microstructures[J]. Nature Communications, 2020, 11(1):No.224.
[15] Yang R G, Zaheri A, Gao W, et al. AFM identification of beetle exocuticle: bouligand structure and nanofiber anisotropic elastic properties[J]. Advanced Functional Materials, 2017, 27(6): No.1603993.
[16] Lee N, Berthelson P R, Nguyen V, et al. Microstructure and nanomechanical properties of the exoskeleton of an ironclad beetle[J]. Bioinspiration & Biomimetics, 2021, 16(3): No.036005.
[17] Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4: No.2634.
[18] Chen S M, Wu K J, Gao H L, et al. Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites[J]. Matter, 2022, 5(5): 1563-1577.
[19] Zhang X Y, Luan Y B, Li Y C, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures, 2021, 276:No. 114575.
[20] Yang F, Xie W H, Meng S H. Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures[J]. International Journal of Solids and Structures, 2021, 208: 107-118.
[21] Cheng L, Thomas A, Glancey James L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A-Applied Science and Manufacturing, 2011, 42(2): 211-220.
[22] 韩奇钢, 石绍迁, 徐凯强,等. 仿螳螂虾鳌结构/功能的玄武岩纤维增强复合材料碟簧研究[J]. 塑性工程学报, 2020, 10(27): 77-82.
Han Qi-gang, Shi Shao-qian, Xu Kai-qiang, et al. Study on basalt fiber reinforced composite disc spring of bionic structure/function of dactyl club of mantis shrimp[J]. Journal of Plasticity Engineering, 2020, 10(27): 77-82.
[1] 熙鹏,丛茜,叶绍波,李红波,张燕青. 真空吸盘的仿生设计与吸附性能分析[J]. 吉林大学学报(工学版), 2025, 55(1): 382-391.
[2] 杨欣,王阳,宋家锋,朱勇,黄彬兵,许述财. 基于虾螯结构的仿生夹层板设计及数值模拟[J]. 吉林大学学报(工学版), 2024, 54(3): 842-851.
[3] 于征磊,曹青,张钧栋,沙鹏威,金敬福,魏万祯,梁平,张志辉. 基于增材制造的着陆器仿生缓冲结构的力学特性[J]. 吉林大学学报(工学版), 2024, 54(10): 3077-3084.
[4] 庄蔚敏,王恩铭. 随机壁厚三维实体泡沫铝建模及压缩仿真[J]. 吉林大学学报(工学版), 2022, 52(8): 1777-1785.
[5] 黄晗,闫庆昊,向枳昕,杨鑫涛,陈金宝,许述财. 基于虾螯的仿生多胞薄壁管耐撞性分析及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 716-724.
[6] 陈奕颖,金敬福,丛茜,陈廷坤,任露泉. 不同冰点介质对冰黏附强度的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1926-1932.
[7] 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[8] 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145.
[9] 刘春宝,陈山石,盛闯,钱志辉,任露泉,任雷. 蜘蛛生物液压驱动原理及其功能仿生探索[J]. 吉林大学学报(工学版), 2020, 50(1): 375-381.
[10] 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83.
[11] 陈东良,臧睿,段鹏,赵伟鹏,翁旭涛,孙杨,唐艺鹏. 基于新月鱼尾推进理论的多连杆鱼骨仿生设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1246-1257.
[12] 吴娜,庄健,张克松,王慧鑫,马云海. 毛蚶贝壳曲面承压力学特性及断裂机理[J]. 吉林大学学报(工学版), 2019, 49(3): 897-902.
[13] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[14] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[15] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 冯浩,席建锋,矫成武 . 基于前视距离的路侧交通标志设置方法[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .