吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1474-1482.doi: 10.13229/j.cnki.jdxbgxb.20230636
• 农业工程·仿生工程 • 上一篇
齐迎春(
),张照辉,陈立新,王清扬,郭雪,于征磊(
),张志辉
Ying-chun QI(
),Zhao-hui ZHANG,Li-xin CHEN,Qing-yang WANG,Xue GUO,Zheng-lei YU(
),Zhi-hui ZHANG
摘要:
受螳螂虾虾螯微观Bouligand结构启发,本文以六边形、圆形、负泊松比、四边形4种胞元作为层间基础结构,建立了4种仿生螺旋结构以及4种对比结构。以热塑性聚氨酯材料为基材,运用3D打印技术进行结构制备。基于准静态压缩试验和数值模拟探究了上述8种结构的吸能性能。结果表明:4种仿生螺旋结构的吸能特性较好,其中仿生六边形螺旋结构比吸能可达531.65 mJ/g。与对应对比结构相比,4种仿生螺旋结构比吸能分别提升64.72%、32.39%、55.84%、25.14%,这表明层间螺旋堆叠分布有效增强了结构的吸能特性,结构变形破坏将会吸收更多的能量。
中图分类号:
| [1] | Tan H L, He Z C, Li K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: No.111415. |
| [2] | 于征磊, 信仁龙, 陈立新, 等. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报: 工学版, 2021, 51(3): 1140-1145. |
| Yu Zheng-lei, Xin Ren-long, Chen Li-xin, et al. Load bearing characteristics of honeycomb protection structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1140-1145. | |
| [3] | Yang X F, Sun Y X, Yang J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11. |
| [4] | Liang H Y, Hao W Q, Xue G L, et al. Parametric design strategy of a novel self-similar hierarchical honeycomb for multi-stage energy absorption demand[J]. International Journal of Mechanical Sciences, 2022, 217:No. 107029. |
| [5] | Zhang Y, Wang J, Wang C H, et al. Crashworthiness of bionic fractal hierarchical structures[J]. Materials & Design, 2018, 158: 147-159. |
| [6] | Zhang W, Yu T X, Xu J. Uncover the underlying mechanisms of topology and structural hierarchy in energy absorption performances of bamboo-inspired tubular honeycomb[J]. Extreme Mechanics Letters, 2022, 52: No.101640. |
| [7] | Yang W, Chen Irene H, Bernd G, et al. Natural flexible dermal armor[J]. Advanced Materials, 2013, 25(1): 31-48. |
| [8] | Quan H C, Yang W, Eric S, et al. Novel defense mechanisms in the armor of the scales of the "living fossil" coelacanth fish[J]. Advanced Functional Materials, 2018, 28(46): No.1804237. |
| [9] | 韩铖. 仿生轻质抗冲击结构材料的设计、制备与性能研究[D]. 南京: 南京航空航天大学机电学院,2018. |
| Han Cheng. Research on bio-inspired lightweight anti-impact structure and its mechanical analysis[D]. Nanjing:College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 2018. | |
| [10] | Meng Q H, Gao Y, Shi X H, et al. Three-dimensional crack bridging model of biological materials with twisted Bouligand structures[J]. Journal of the Mechanics and Physics of Solids, 2022, 159:No.104729. |
| [11] | Lian J, Wang J. Microstructure and mechanical anisotropy of crab cancer magister exoskeletons[J]. Experimental Mechanics, 2014, 54(2): 229-239. |
| [12] | Ma C L, Gu D D, Lin K J, et al. Selective laser melting additive manufacturing of cancer pagurus's claw inspired bionic structures with high strength and toughness[J]. Applied Surface Science, 2019, 469: 647-656. |
| [13] | Kellersztein I, Cohen S R, Bar-On B, et al. The exoskeleton of scorpions' pincers: structure and micro-mechanical properties[J]. Acta Biomaterialia, 2019, 94: 565-573. |
| [14] | Israel G, Israel K, Daniel W H. Nested helicoids in biological microstructures[J]. Nature Communications, 2020, 11(1):No.224. |
| [15] | Yang R G, Zaheri A, Gao W, et al. AFM identification of beetle exocuticle: bouligand structure and nanofiber anisotropic elastic properties[J]. Advanced Functional Materials, 2017, 27(6): No.1603993. |
| [16] | Lee N, Berthelson P R, Nguyen V, et al. Microstructure and nanomechanical properties of the exoskeleton of an ironclad beetle[J]. Bioinspiration & Biomimetics, 2021, 16(3): No.036005. |
| [17] | Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4: No.2634. |
| [18] | Chen S M, Wu K J, Gao H L, et al. Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites[J]. Matter, 2022, 5(5): 1563-1577. |
| [19] | Zhang X Y, Luan Y B, Li Y C, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures, 2021, 276:No. 114575. |
| [20] | Yang F, Xie W H, Meng S H. Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures[J]. International Journal of Solids and Structures, 2021, 208: 107-118. |
| [21] | Cheng L, Thomas A, Glancey James L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A-Applied Science and Manufacturing, 2011, 42(2): 211-220. |
| [22] | 韩奇钢, 石绍迁, 徐凯强,等. 仿螳螂虾鳌结构/功能的玄武岩纤维增强复合材料碟簧研究[J]. 塑性工程学报, 2020, 10(27): 77-82. |
| Han Qi-gang, Shi Shao-qian, Xu Kai-qiang, et al. Study on basalt fiber reinforced composite disc spring of bionic structure/function of dactyl club of mantis shrimp[J]. Journal of Plasticity Engineering, 2020, 10(27): 77-82. |
| [1] | 熙鹏,丛茜,叶绍波,李红波,张燕青. 真空吸盘的仿生设计与吸附性能分析[J]. 吉林大学学报(工学版), 2025, 55(1): 382-391. |
| [2] | 杨欣,王阳,宋家锋,朱勇,黄彬兵,许述财. 基于虾螯结构的仿生夹层板设计及数值模拟[J]. 吉林大学学报(工学版), 2024, 54(3): 842-851. |
| [3] | 于征磊,曹青,张钧栋,沙鹏威,金敬福,魏万祯,梁平,张志辉. 基于增材制造的着陆器仿生缓冲结构的力学特性[J]. 吉林大学学报(工学版), 2024, 54(10): 3077-3084. |
| [4] | 庄蔚敏,王恩铭. 随机壁厚三维实体泡沫铝建模及压缩仿真[J]. 吉林大学学报(工学版), 2022, 52(8): 1777-1785. |
| [5] | 黄晗,闫庆昊,向枳昕,杨鑫涛,陈金宝,许述财. 基于虾螯的仿生多胞薄壁管耐撞性分析及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 716-724. |
| [6] | 陈奕颖,金敬福,丛茜,陈廷坤,任露泉. 不同冰点介质对冰黏附强度的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1926-1932. |
| [7] | 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547. |
| [8] | 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145. |
| [9] | 刘春宝,陈山石,盛闯,钱志辉,任露泉,任雷. 蜘蛛生物液压驱动原理及其功能仿生探索[J]. 吉林大学学报(工学版), 2020, 50(1): 375-381. |
| [10] | 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83. |
| [11] | 陈东良,臧睿,段鹏,赵伟鹏,翁旭涛,孙杨,唐艺鹏. 基于新月鱼尾推进理论的多连杆鱼骨仿生设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1246-1257. |
| [12] | 吴娜,庄健,张克松,王慧鑫,马云海. 毛蚶贝壳曲面承压力学特性及断裂机理[J]. 吉林大学学报(工学版), 2019, 49(3): 897-902. |
| [13] | 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798. |
| [14] | 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792. |
| [15] | 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820. |
|