Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (1): 294-312.doi: 10.13229/j.cnki.jdxbgxb.20220298

Previous Articles    

Design and experiment of grapevine cold⁃proof soil cleaner with combined scraping and brushing

Shuai MA1(),Li-ming XU1(),Shu-cai XU2,Cong NIU1,Cheng-gong YAN1,Hao-chao TAN1   

  1. 1.College of Engineering,China Agricultural University,Beijing 100083,China
    2.State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China
  • Received:2022-03-23 Online:2024-01-30 Published:2024-03-28
  • Contact: Li-ming XU E-mail:13637070719@163.com;xlmoffice@126.com

Abstract:

Aiming at the problems of incomplete soil cleaning, easy damage to the grapevine and poor adaptation by mechanized soil cleaning in the open-field vineyards of northern China, a grapevine cold-proof soil cleaner with combined scraping and brushing is designed. The double-winged scraper components, rigid impeller components and flexible brush wire components are adopted, which can clean the cold-proof soil above the grapevine, the cold-proof soil on the side periphery and the cold-proof soil near the root of the grapevine at one time. The key components were design and a control system based on STM32F103 was built to realize automatic obstacle avoidance of scraper components and automatic leveling of the machine. Leveling performance tests showed that when the leveling frame was tilted to the left to the maximum angle or tilted to the right to the maximum angle, the automatic leveling process can be completed within 1 s, and there is no obvious overshooting. When the tractor was driven on uneven vineyards, the three soil cleaning components maintain the desired leveling angle at all times (within±2°), even if the tractor itself undergoes a large change in tilt. The field soil cleaning test showed that all the working components operated stably and there was no interference. After the soil cleaning operation, the soil cleaning rate was about 81.96%, and the grapevine damage rate was about 1.67%, which met the requirements of open-field grapevine cold-proof soil cleaning in northern China.

Key words: agricultural mechanization, grapevine cold-proof soil, combined scraping and brushing, soil cleaner

CLC Number: 

  • S224.9

Fig.1

Diagram of grapevine cold-proof soil ridge"

Fig.2

Structure diagram of the grapevine soil cleaner with combined scraping and brushing"

Table 1

Main technical parameters of grapevine cleaner"

参 数数 值
整机尺寸(长×宽×高)/mm×mm×mm2000×1830×1680
整机质量/kg650
配套动力/kW≥40
适应行距/m3~4
清土高度/mm≤350
输入转速/(r·min-1540
作业速度/(km·h-11.2~1.5

Fig.3

Overall structure diagram of soil scraper components"

Fig.4

Structure diagram of double-winged scraper"

Fig.5

Structure diagram of impeller components"

Fig.6

Structure diagram of flexible brush wire components"

Fig.7

Motion diagram of automatic leveling mechanism"

Fig.8

Force diagram of automatic leveling mechanism"

Fig.9

Schematic diagram of automatic leveling control system"

Fig.10

Control system hardware composition"

Fig.11

System control flow chart"

Fig.12

Automatic obstacle avoidance simulation operation of double-winged scraper components"

Fig.13

Automatic obstacle avoidance motion trajectory of scraper components"

Table 2

Test factor codes"

编码前进速度v2/(m?s-1油缸作业速度v3/(mm?s-1角度阈值α0/(°)
-1.6820.301605
-10.321686
00.351807.5
10.381929
1.6820.4020010

Table 3

Simulation test scheme and results"

序号前进速度编码值X1油缸作业速度编码值X2角度阈值编码值X3有效作业率E/%
111147.33
211-146.67
31-1143.33
41-1-142.93
5-11151.07
6-11-150.67
7-1-1148.50
8-1-1-147.73
91.6820044.00
10-1.6820050.67
1101.682049.47
120-1.682044.13
13001.68248.00
1400-1.68246.80
1500046.67
1600046.83
1700047.17
1800047.07
1900046.93
2000048.00

Table 4

Regression model significance analysis"

方差来源平方和自由度FP
模型99.91979.68<0.0001**
X161.271439.81<0.0001**
X236.191259.75<0.0001**
X31.3219.490.0116*
X1X20.6214.460.0608
X1X31.513E-00310.0110.9191
X2X31.513E-00310.0110.9191
X120.1411.020.3363
X220.1210.840.3823
X320.2211.550.2420
残差1.3910
失拟项0.2950.260.9146
纯误差1.105
总值101.3019

Fig.14

Spatial layout of combined scraping and brushing soil cleaning components"

Fig.15

Discrete element simulation test of combinedscraping and brushing soil cleaning components"

Table 5

Inclination sensor calibration results"

测量参数测量值
传感器信号值U/V1.271.391.561.751.902.03
调平机架倾角σ/(°)-20.0-14.2-5.63.812.417.5

Fig.16

Static tests of automatic leveling system"

Fig.17

Results of static leveling tests"

Fig.18

Field dynamic tests of automatic leveling system"

Fig.19

Results of field dynamic tests"

Fig.20

Measurement of moisture content and compactness of grapevine cold-proof soil"

Fig.21

Test equipment"

Fig.22

Effect of field soil cleaning operation"

Table 6

Damage rate of grapevine"

葡萄行葡萄总株数损伤葡萄藤株数损伤率/%
平均值1.67%
115021.33
215032.00

Table 7

Rate of soil cleaning"

葡萄行清土前土垄尺寸平均值/cm清土后土垄尺寸平均值/cm清土率/%
上底宽下底宽总高上底宽下底宽总高
均值3186.533.51421.52081.96
130853215211981.41
232883513222182.50
1 Wang J, Zhang X Y, Su L, et al. Global warming effects on climate zones for wine grape in Ningxia region, China [J]. Theoretical and Applied Climatology, 2020, 140(4): 1527-1536.
2 马帅,徐丽明,袁全春,等. 葡萄机械化清土的发展现状与解决对策[J]. 农机化研究, 2020, 42(7): 1-8.
Ma Shuai, Xu Li-ming, Yuan Quan-chun, et al. Development status and countermeasures of grape mechanized soil clearing[J]. Journal of Agricultural Mechanization Research, 2020, 42(7): 1-8.
3 刘松. 圆锥螺旋式入春葡萄挖藤机设计与试验研究[D]. 乌鲁木齐:新疆农业大学, 2014.
Liu Song. Design and experiment study of conical spiral manner of grape vines in the spring digging machine[D]. Urumqi: Xinjiang Agricultural University, 2014.
4 亓桂梅,李旋,赵艳侠,等. 2017年世界葡萄及葡萄酒生产及流通概况[J]. 中外葡萄与葡萄酒, 2018(1): 68-74.
Qi Gui-mei, Li Xuan, Zhao Yan-xia, et al. Production and circulation of grape and its products in the world in 2017[J]. Sino-Overseas Grapevine & Wine, 2018(1): 68-74.
5 袁全春,徐丽明,马帅,等. 我国北方葡萄冬季埋土和春季清土作业的机械化现状与思考[J]. 中外葡萄与葡萄酒, 2017(6): 66-67.
Yuan Quan-chun, Xu Li-ming, Ma Shuai, et al. Current status and considerations on mechanization of winter burying and spring cleaning operations for grapes in northern China[J]. Sino-Overseas Grapevine & Wine, 2017(6): 66-67.
6 徐丽明,邢洁洁,李世军,等. 国外葡萄生产机械化发展和对我国现状的思考[J]. 河北林业科技, 2014(5): 124-128.
Xu Li-ming, Xing Jie-jie, Li Shi-jun, et al. Development of mechanization of grape production abroad and reflections on China's current situation[J]. Journal of Hebei Forestry Science and Technology, 2014(5): 124-128.
7 周伟斌. 葡萄起藤机的设计[D]. 银川: 宁夏大学机械工程学院, 2017.
Zhou Wei-bin. Design of grape vine digging machine[D]. Yinchuan: School of Mechanical Engineering,Ningxia University, 2017.
8 Bisaglia C, Romano E. Utilization of vineyard prunings: A new mechanization system from residues harvest to CHIPS production[J]. Biomass & Bioenergy, 2018, 115: 136-142.
9 曾鉴. 气吹梳刷组合式葡萄防寒土清除机的设计与试验[D]. 北京: 中国农业大学工学院, 2020.
Zeng Jian. Design and experiment of combined air-blown and brush grape cold-proof soil remover[D]. Beijing: College of Engineering, China Agricultural University, 2020.
10 杜光雨. 风力吹送式酿酒葡萄清土机设计及试验研究[D]. 镇江:江苏大学农业工程学院, 2020.
Du Guang-yu, Design and experimental study of wine grape covering soil clearing machine with wind blowing [D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2020.
11 曾保宁,田志道,赵润良. 葡萄起藤机的设计与研制[J]. 中国农机化学报, 2013(6): 230-232.
Zeng Bao-ning, Tian Zhi-dao, Zhao Run-liang. Design and development of grape vine machine[J]. Journal of Chinese Agricultural Mechanization, 2013(6): 230-232.
12 陈智, 万平, 杨术明, 等. 葡萄藤起藤自动除土机[P]. 中国: CN205755312U. 2016-12-07.
13 李法键. 葡萄园防寒土清除机关键部件设计与分析[D]. 秦皇岛: 河北科技师范学院机电工程学院, 2019.
Li Fa-jian. Design and analysis on key components of vineyard cold soil removal machine [D]. Qinhuangdao: College of Agricultural Engineering, Hebei Normal University of Science & Technology, 2019.
14 刘芳建,刘忠军,王锦江,等. 自动避障葡萄藤扒土机的设计与试验研究[J]. 农机化研究, 2018(4): 87-90.
Liu Fang-jian, Liu Zhong-jun, Wang Jin-jiang, et al. Design and experimental study of automatic obstacle-avoid digging machine for grape wine[J]. Journal of Agricultural Mechanization Research, 2018(4): 87-90.
15 王文斌. 葡萄清土开沟机设计研究[D]. 北京: 中国农业大学工学院, 2015.
Wang Wen-bin. Research & design of grape vines digger[D]. Beijing: College of Engineering, China Agricultural University, 2015.
16 马帅,徐丽明,邢洁洁,等. 叶轮旋转式葡萄藤埋土单边清除机研制[J]. 农业工程学报, 2018, 34(23): 1-10.
Ma Shuai, Xu Li-ming, Xing Jie-jie, et al. Development of unilateral cleaning machine for grapevine buried by soil with rotary Impeller[J]. Transactions of the CSAE, 2018, 34(23): 1-10.
17 Ma Shuai, Niu Cong, Yan Cheng-gong, et al. Soil cleaning effect and parameters optimization of the scraper for grapevine cold-proof soil investigated by DEM simulation [J]. Biosystems Engineering,2021, 210: 156-170.
18 Coetzee C J, Lombard S G. Discrete element method modelling of a centrifugal fertiliser spreader[J]. Biosystems Engineering, 2011, 109(4): 308-325.
19 Ding S, Bai L, Yao Y, et al. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates[J]. Computers and Electronics in Agriculture, 2018, 152: 32-39.
20 胡永光,杨叶成,肖宏儒,等. 茶园施肥机离心撒肥过程仿真与参数优化[J]. 农业机械学报, 2016, 47(5): 77-82.
Hu Yong-guang, Yang Ye-cheng, Xiao Hong-ru, et al. Simulation and parameter optimization of centrifugal fertilizer spreader for tea plants[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 77-82.
21 Van L P, Tijskens E, Dintwa E, et al. A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations[J]. Powder Technology, 2006, 170(2):71-85.
22 吕金庆,孙贺,兑瀚,等. 锥形撒肥圆盘中肥料颗粒运动模型优化与试验[J]. 农业机械学报, 2018, 49(6): 85-91.
Lv Jin-qing, Sun He, Han Dui, et al. Optimization and experiment of fertilizer particle motion model in conical spreading disk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 85-91.
23 马帅,徐丽明,牛丛,等. 分层交错式葡萄防寒土弧形清土叶轮的设计与试验[J]. 农业工程学报, 2021, 37(10): 1-9.
Ma Shuai, Xu Li-ming, Niu Cong, et al. A facile arc impeller with layered-staggered structure to clean cold-proof soil on grapes[J]. Transactions of the CSAE, 2021, 37(10): 1-9.
24 孙永佳,周军,李学强,等. 马铃薯联合收获机车身调平系统设计与试验[J]. 农业机械学报, 2020, 51(): 298-306.
Sun Yong-jia, Zhou Jun, Li Xue-qiang, et al. Design and experiment of body leveling system for potato combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.): 298-306.
25 董伟亮. 液压设计手册[M]. 北京: 机械工业出版社, 2005.
26 周浩,胡炼,罗锡文,等. 旋耕机自动调平系统设计与试验[J]. 农业机械学报, 2016, 47(): 117-123.
Zhou Hao, Hu Lian, Luo Xi-wen, et al. Design and experiment on auto leveling system of rotary tiller [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.): 117-123.
27 潘杰,陈凡,胡建平,等. 基于EDEM-RecurDyn的指夹式取苗爪仿真优化设计[J]. 农业机械学报, 2023,53(5):75-85, 301.
Pan Jie, Chen Fan, Hu Jian-ping, et al. Simulation and optimization design of finger-clamping seedling picking claw based on EDEM-RecurDyn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023,53(5):75-85, 301.
28 王少杰, 殷月, 余圣锋, 等. 基于RecurDyn-EDEM的装载机耦合动力学仿真分析[J]. 机械设计, 2021,38(11):1-6.
Wang Shao-jie, Yin Yue, Yu Sheng-feng, et al. Dynamic analysis on loader coupling based on RecurDyn-EDEM[J]. Journal of Machine Design, 2021, 38(11):1-6.
29 于畅畅,徐丽明,王庆杰,等. 篱架式栽培葡萄双边作业株间自动避障除草机设计与试验[J]. 农业工程学报, 2019, 35(5): 1-9.
Yu Chang-chang, Xu Li-ming, Wang Qing-jie, et al. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the CSAE, 2019, 35(5): 1-9.
30 马帅,徐丽明,袁全春,等. 葡萄藤防寒土与清土部件相互作用的离散元仿真参数标定[J]. 农业工程学报, 2020, 36(1): 40-49.
Ma Shuai, Xu Li-ming, Yuan Quan-chun, et al. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components[J]. Transactions of the CSAE, 2020, 36(1): 40-49.
[1] Peng-fei ZHOU,Xue-geng CHEN,He-wei MENG,Rong-qing LIANG,Bing-cheng ZHANG,Za KAN. Design and experiment of trommel with function of separating soil from residual film mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2718-2731.
[2] Wei-jian LIU,Xi-wen LUO,Shan ZENG,Zhi-qiang WEN,Li ZENG. Field turning mechanism and performance test of crawler reclaimed rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2695-2705.
[3] Duan-yang GENG,Xiao-qi JI,Xiao-dong MOU,Hua-biao LI,Hao-lin YANG,Yan-chun YAO,Ji-da WU. Design and experiment of harvesting and cutting table of Broussonetia papyrifera [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2152-2164.
[4] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[5] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU,Wen-ming WANG. Design and experiment of bionic ear picking device for fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1231-1244.
[6] Guo-qiang DUN,Wen-hui LIU,Ning MAO,Xing-peng WU,Wen-yi JI,Hong-yan MA. Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 285-296.
[7] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[8] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[9] Wen-ying GAO,Jing LIN,Bao-fa LI,Wei WANG,Shi-yan GU. Vibration characteristics analysis and structural optimization of straw deep bury and returning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 970-980.
[10] Jia-jie LIU,Lan MA,Wei XIANG,Bo YAN,Qing-hua WEN,Jiang-nan LYU. Design of 4QM⁃4.0 fibre crops green fodder combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3039-3048.
[11] Bai-gong ZENG,Kui-liang LI,Jin YE,Li-li REN,Jaloliddin Rashidov,Ming ZHANG. Design and experiment of harvesting device for industrialized production line of Shanghaiqing [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2756-2764.
[12] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[13] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU. Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2486-2500.
[14] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[15] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!