吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 414-421.doi: 10.13229/j.cnki.jdxbgxb20191085

• 车辆工程·机械工程 • 上一篇    

高重频纳秒脉冲放电点火系统设计

赵庆武(),程勇(),杨雪,王宁   

  1. 山东大学 能源与动力工程学院,济南 250061
  • 收稿日期:2019-11-27 出版日期:2021-03-01 发布日期:2021-02-09
  • 通讯作者: 程勇 E-mail:zhaoqwu@foxmail.com;cysgd@sdu.edu.cn
  • 作者简介:赵庆武(1992-),男,博士研究生.研究方向:等离子体辅助燃烧.E-mail:zhaoqwu@foxmail.com
  • 基金资助:
    国家自然科学基金项目(51976107);北京理工大学高效低排放内燃机技术工业和信息化部重点实验室科研基地科技支撑专项计划项目(2017CX02015)

A high⁃frequency nanosecond⁃pulsed ignition system for plasma assisted ignition and combustion

Qing-wu ZHAO(),Yong CHENG(),Xue YANG,Ning WANG   

  1. School of Energy and Power Engineering,Shandong University,Jinan 250061,China
  • Received:2019-11-27 Online:2021-03-01 Published:2021-02-09
  • Contact: Yong CHENG E-mail:zhaoqwu@foxmail.com;cysgd@sdu.edu.cn

摘要:

在脉冲变压器和磁压缩脉冲成型网络的基础上,设计了基于谐振充电的紧凑型高重复频率纳秒脉冲放电点火系统。通过电路仿真阐明了脉冲成型电路的工作过程和原理,电路测试结果表明:系统可以产生上升时间约20 ns、半高宽约50 ns、幅值为10 kV以上的电压脉冲,脉冲重复频率为16 kHz时能保证较好的幅值一致性。放电测试结果表明:纳秒脉冲放电产生的等离子体具有较高的亮度,脉冲重复频率为10 kHz时的10个脉冲较单脉冲放电的等离子体体积和亮度更大;使用同轴电极时,等离子体覆盖面积明显变大。定容弹点火实验表明:多脉冲放电较单脉冲放电的点火延迟明显缩短;相比于单点放电,同轴电极放电能显著缩短点火延迟。

关键词: 动力机械工程, 点火系统, 等离子体, 纳秒脉冲

Abstract:

High-frequency nanosecond pulsed discharge is an effective way to generate non-equilibrium plasma for plasma assisted ignition and combustion research. In this paper, a compact high-frequency nanosecond-pulsed ignition system is designed based on resonant charging and magnetic pulse compression. Details of the electrical architecture and working principles of the ignition system are presented. The system can produce high voltage pulses over 10 kV, with a rising time of 20 ns, and a full width at half maximum of 50 ns, at repetition rate up to 16 kHz. Test results show that 10 pulses at repetition rate of 16 kHz have larger discharge volume and higher brightness than single pulse, and the utilization of coaxial electrode enlarges the discharge volume compared with pin-to-pin electrode. The experiment results show that the ignition delay time of multi-pulse discharge is much shorter than that of single-pulse discharge, and coaxial electrode discharge can significantly shorten the ignition delay time compared to pin-to-pin electrode with the same pulse number.

Key words: power mechanical engineering, ignition system, plasma, nanosecond pulse

中图分类号: 

  • TK413.9

图1

纳秒脉冲放电点火系统示意图"

图2

脉冲成型电路图"

图3

脉冲成型电路仿真模型"

表1

仿真模型所用的非线性磁芯参数"

参数数值
外径/cm4
内径/cm2.5
截面积/cm1.2
饱和磁感应强度/T0.8
剩余磁感应强度/T0.7
矫顽力/(A·m-1)16

图4

脉冲成型电路仿真结果"

图5

脉冲成型电路仿真结果:高压侧节点波形放大图"

图6

充电过程示意图"

图7

放电过程示意图"

表2

主要元器件规格参数"

器件型号/规格说明
S1S2FGA25N1201200 V,25 A
D1D2FR3071000 V,3 A
C1630 V/luFCBB电容
PT磁芯40*25*20超微晶1K107J
C2C320 kV/1 nF高压瓷片电容
D3CL01-1212 kV,0.5 A

图8

脉冲成型电路实物图"

图9

电压测试结果"

图10

16 kHz重复频率下4个连续脉冲波形"

图11

NPD放电电压、电流及能量变化波形"

表3

放电实验设置"

组别电极类型放电参数
a单点电极1个脉冲
b单点电极10 kHz,10个脉冲
c同轴电极10 kHz,10个脉冲
d单点电极16 kHz,10个脉冲
e同轴电极16 kHz,10个脉冲

图12

同轴电极未放电时图像"

图13

不同电极类型和放电参数下的NPD放电图像"

图14

不同放电条件下NPD点火后定容弹中压力变化"

图15

不同放电条件下累积放热率变化"

1 宋昌庆, 陈文淼, 李君, 等. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报: 工学版, 2019, 49(6): 1929-1935.
Song Chang-qing, Chen Wen-miao, Li Jun, et al. Effects of single and dual ignition on combustion characteristics of natural gas under different equivalence ratios[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1929-1935.
2 李伟峰, 刘忠长, 王忠恕, 等. N2和 CO2稀释对天然气发动机燃烧和NOx排放的影响[J]. 吉林大学学报: 工学版, 2015, 45(4): 1115-1123.
Li Wei-feng, Liu Zhong-chang, Wang Zhong-shu,et al. Effects of N2 and CO2 dilution on the combustion and NOx emissions of natural gas engines[J].Journal of Jilin University (Engineering and Technology Edition), 2015, 45(4): 1115-1123.
3 Ju Y, Sun W. Plasma assisted combustion: dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
4 Klimov A, Bityurin V, Moralev I, et al. Plasma assisted ignition and combustion[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2006: 10.2514/6.2005-3428.
5 Starikovskaia S M. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms[J]. Journal of Physics D: Applied Physics, 2014, 47(35): 353001.
6 聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展[J]. 高电压技术, 2017, 43(6): 1749-1758.
Nie Wan-sheng, Zhou Si-yin, Che Xue-ke. Review of plasma assisted combustion tecnology by nanosecond pulsed discharge[J]. High Voltage Engineering, 2017, 43(6): 1749-1758.
7 林烈, 吴承康. 大气压非平衡等离子体中非平衡度的探讨[J]. 核聚变与等离子体物理, 1998, 18(2): 57-60.
8 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-706.
Shao Tao, Zhang Cheng, Wang Rui-xue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-706.
9 Takana H, Nishiyama H. Numerical simulation of nanosecond pulsed DBD in lean methane-air mixture for typical conditions in internal engines[J]. Plasma Sources Science and Technology, 2014, 23(3): 1-9.
10 Akiyama H, Heller R.Bioelectrics[M]. Tokyo, Japan: Springer, 2017.
11 Blajan M, Umeda A, Shimizu K. Surface treatment of glass by microplasma[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 714-720.
12 Kuroki T, Oishi T, Yamamoto T, et al. Bromomethane decomposition using a pulsed dielectric barrier discharge[J]. IEEE Transactions on Industry Applications, 2012, 49(1): 293-297.
13 Shao T, Zhang D, Yu Y, et al. A compact repetitive unipolar nanosecond-pulse generator for dielectric barrier discharge application[J]. IEEE Transactions on Plasma Science, 2010, 38(7): 1651-1655.
14 Liu Y, Liu S, Han Y, et al. Optimization design of a repetitive nanosecond pulse generator based on saturable pulse transformer and magnetic switch[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3277-3285.
15 Lefkowitz J K, Guo P, Ombrello T, et al. Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge[J]. Combustion and Flame, 2015, 162(6): 2496-2507.
16 Lefkowitz J K, Ombrello T. An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition[J]. Combustion and Flame, 2017, 180: 136-147.
17 Evans M D G, Baillard V J P, Maqueo P D G, et al. Compact nanosecond magnetic pulse compression generator for high-pressure diffuse plasma generation[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2358-2365.
18 Rusterholtz D L, Lacoste D A, Stancu G D, et al. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges[J]. Journal of Physics D: Applied Physics, 2013, 46(46): 464010.
19 Xiao D. Gas Discharge and Gas Insulation[M]. Berlin, Heidelberg: Springer, 2016.
20 Hwang J, Bae C, Park J, et al. Microwave-assisted plasma ignition in a constant volume combustion chamber[J]. Combustion and Flame, 2016, 167: 86-96.
[1] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[2] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[3] 李欣欣,李大宇,赵子瑞,周亚军. 低温等离子体处理功率对酱牛肉贮藏品质的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1934-1940.
[4] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[5] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[6] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[7] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[8] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[9] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[10] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[11] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[12] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[13] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[14] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[15] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!