吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (12): 3565-3572.doi: 10.13229/j.cnki.jdxbgxb.20220141
• 计算机科学与技术 • 上一篇
Gui-xia LIU1,2(),Yu-xin TIAN1,2,Tao WANG1,2,Ming-rui MA1,2
摘要:
针对胰腺分割难以获得较高准确率的问题,本文提出了一种基于双输入3D卷积神经网络的胰腺分割算法。首先,通过增加输入切片间上下文残差信息突出边界区域;然后,引入注意力机制抑制无用特征、增加有效特征的表达,提高了胰腺的分割准确率;最后,将该算法在NIH胰腺分割数据集上进行评估。实验结果表明,本文算法性能优先于对比的主流算法。
中图分类号:
1 | Zhang Y, Wu J, Liu Y, et al. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set[J]. Medical Image Analysis, 2021, 68: No. 101884. |
2 | Pandey S, Tekchandani H, Verma S. A literature review on application of machine learning techniques in pancreas segmentation[C]∥2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 2020: 401-405. |
3 | Bazgir O, Barck K, Carano R A D, et al. Kidney segmentation using 3D U-Net localized with Expectation Maximization[C]∥2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Albuquerque, NM, USA, 2020: 22-25. |
4 | Ibrahim S M, Ibrahim M S, Usman M, et al. A study on heart segmentation using deep learning algorithm for mri scans[C]∥2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Normandy, France, 2019: 1-5. |
5 | Li C, Tan Y, Chen W, et al. Attention Unet++: a nested attention-aware U-net for liver CT image segmentation[C]∥2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2020: 345-349. |
6 | Man Y, Huang Y, Feng J, et al. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1971-1980. |
7 | Zhou Y, Xie L, Shen W, et al. A fixed-point model for pancreas segmentation in abdominal CT scans[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec, Canada, 2017: 693-701. |
8 | Roth H R, Lu L, Lay N, et al. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation[J]. Medical Image Analysis, 2018, 45: 94-107. |
9 | Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas[J/OL]. [2022-01-25]. |
10 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234-241. |
11 | Cai J, Lu L, Xing F, et al. Pancreas segmentation in CT and MRI images via domain specific network designing and recurrent neural contextual learning[J/OL]. [2022-01-28]. |
12 | Liu S, Yuan X, Hu R, et al. Automatic pancreas segmentation via coarse location and ensemble learning[J]. IEEE Access, 2019, 8: 2906-2914. |
13 | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431-3440. |
14 | 凌语, 孙自强. 基于卷积神经网络的乳腺病理图像识别算法[J]. 江苏大学学报: 自然科学版, 2019, 40(5): 573-578. |
Ling Yu, Sun Zi-qiang. Breast pathological image recognition algorithm based on convolutional neural network[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(5): 573-578. | |
15 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
16 | He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]∥European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 630-645. |
17 | Wu Y, He K. Group normalization[C]∥Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 2018: 3-19. |
18 | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018: 7132-7141. |
19 | 陈洁, 詹永照. 多时间尺度双流CNN与置信融合的视频动作识别[J]. 江苏大学学报: 自然科学版, 2021, 42(3): 318-324. |
Chen Jie, Zhan Yong-zhao. Video motion recognition fused with multi-time-scale dual-stream CNN and confidence[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(3): 318-324. | |
20 | Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1314-1324. |
21 | Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017: 472-480. |
22 | Zhang J, Xie Y, Wang Y, et al. Inter-slice context residual learning for 3D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 40(2): 661-672. |
23 | Roth H R, Lu L, Farag A, et al. Deep organ: Multi-level deep convolutional networks for automated pancreas segmentation[C]∥International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 556-564. |
[1] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[2] | 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. |
[3] | 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619. |
[4] | 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648. |
[5] | 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379. |
[6] | 郭晓新,李佳慧,张宝亮. 基于高分辨率网络的视杯和视盘的联合分割[J]. 吉林大学学报(工学版), 2023, 53(8): 2350-2357. |
[7] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[8] | 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108. |
[9] | 唐菲菲,周海莲,唐天俊,朱洪洲,温永. 融合动静态变量的滑坡多步位移预测方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1833-1841. |
[10] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[11] | 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457. |
[12] | 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304. |
[13] | 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480. |
[14] | 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162. |
[15] | 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154. |
|