吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 1-17.doi: 10.13229/j.cnki.jdxbgxb20210716

• 综述 •    

搅拌摩擦焊温度场研究进展

卢晓红(),乔金辉,周宇,马冲,隋国川,孙卓   

  1. 大连理工大学 机械工程学院,辽宁 大连 116024
  • 收稿日期:2021-07-23 出版日期:2023-01-01 发布日期:2023-07-23
  • 作者简介:卢晓红(1978-),女,教授,博士. 研究方向:精密加工,加工及装配过程测控技术. E-mail: lxhdlut@dlut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFA0709003);中央高校基本科研业务费专项项目(DUT20ZD204);大连市科技创新基金项目(2020JJ26GX041)

Research progress of temperature field in friction stir welding

Xiao-hong LU(),Jin-hui QIAO,Yu ZHOU,Chong MA,Guo-chuan SUI,Zhuo SUN   

  1. School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China
  • Received:2021-07-23 Online:2023-01-01 Published:2023-07-23

摘要:

系统归纳论述了搅拌摩擦焊(FSW)温度场有限元仿真方法与实验测量方法的研究现状。对基于有限元仿真方法的国内外论文数量进行统计分析,分别从基于热源模型、计算固体力学和计算流体力学的仿真技术3个方面展开论述;对于实验测量方法,梳理了采用热电偶、红外热像仪的测温原理和研究思路,分析了不同测温方法的特点。对上述各种方法的优势和弊端进行了对比分析,并提出了未来研究方向。

关键词: 金属材料, 搅拌摩擦焊, 温度场, 数值模拟, 测温实验

Abstract:

The research status of friction stir welding(FSW)temperature field finite element simulation method and experimental measurement method are summarized systematically. The statistical analysis of papers based on finite element simulation method is carried out from three aspects : heat source model, computational solid mechanics(CSM), and computational fluid dynamics(CFD). For experimental measurement method, the characteristics of different temperature measurement methods are summarized by discussing the temperature measurement principle and research routes of thermocouple and infrared thermal camera. This paper analyzes the advantages and disadvantages of the above methods, and puts forward the future research direction.

Key words: metallic materials, friction stir welding, temperature field, numerical simulation, temperature measurement experiment

中图分类号: 

  • TG453

图1

基于各类仿真方法的论文数量"

表1

基于热源模型的仿真模型温度预测精度"

热源模型文献号温度预测精度/%
基于Rosenthal解析方法的热源模型73.73
133
基于摩擦产热的分布式面热源模型154.9
174
基于扭矩的摩擦产热热源模型213.5
237.4

考虑接触条件、轴肩凹角与搅拌针锥角的

基于扭矩的摩擦产热热源模型

287
306.5
337.1
353.8
考虑材料屈服强度的基于扭矩的摩擦产热热源模型373.2
395.73
404.6

图2

基于拉格朗日方法的FSW温度云图[46]"

图3

基于ALE方法的FSW温度云图[63]"

图4

基于CEL方法的FSW模型[70]"

图5

基于SPH方法的FSW模型[78]"

表2

基于CSM的仿真模型温度预测精度"

建模方法文献号温度预测精度/%
拉格朗日方法502.7
5210
549.37
ALE方法624.4
682.27
CEL方法7111.5
725.6
744.94
粒子法782.74
807.79

表3

基于CFD的仿真模型温度预测精度"

文献编号温度预测精度/%
868
873.98
884.1
903.69
923.43
941.19

表4

FSW仿真方法对比分析"

分析方法建模方法仿真软件分析类型FSW阶段仿真耗时
热源模型产热公式ANSYS、ABAQUS、MSC.Marc、COMSOL瞬态分析忽略下压阶段适中
基于CSM拉格朗日方法DEFORM瞬态分析所有阶段适中
ALE方法ABAQUS/Explicit瞬态分析只模拟下压及停留阶段或忽略下压阶段
CEL方法ABAQUS/Explicit瞬态分析所有阶段
粒子法ABAQUS/Explicit瞬态分析所有阶段适中
基于CFD欧拉方法FLUENT与COMSOL稳态分析稳定焊接阶段
1 Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding[P]. GB Patent Application No: 9125978.8, 1991.
2 陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11-21.
Chen Gao-qiang, Shi Qing-yu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11-21.
3 武凯, 贾贺鹏, 孙宇, 等. 搅拌摩擦焊技术的研究进展[J]. 机械制造与自动化, 2020, 49(6): 1-9.
Wu Kai, Jia He-peng, Sun Yu, et al. Research progress of friction stir welding technology[J]. Machine Buiding and Automation, 2020, 49(6): 1-9.
4 刘其鹏, 顾乃建, 刘泽, 等. AA6061-T6板材搅拌摩擦焊温度场仿真[J]. 大连交通大学学报, 2018, 39(3): 80-85.
Liu Qi-peng, Gu Nai-jian, Liu Ze, et al. Simulation of temperature field of AA6061-T6 sheet in friction stir welding[J]. Journal of Dalian Jiaotong University, 2018, 39(3): 80-85.
5 McClure J C, Tang W, Murr L E, et al. A thermal model of friction stir welding[C]∥ASM Proceedings of the International Conference: Trends in Welding Research, Georgia, United States, 1998: 590-595.
6 Russell M J, Shercliff H. Analytical modelling of friction stir welding[J]. Analytical Modelling of Friction Stir Welding Russell, 1999, 98: 197-207.
7 Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation[J]. International Journal of Machine Tools and Manufacture, 2003, 43(6): 605-615.
8 郭柱, 朱浩, 崔少朋, 等. 7075铝合金搅拌摩擦焊接头温度场及残余应力场的有限元模拟[J]. 焊接学报, 2015, 36(2): 92-96.
Guo Zhu, Zhu Hao, Cui Shao-peng, et al. Finite element simulation of friction stir welding temperature field and residual stress field of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2015, 36(2): 92-96.
9 曹文胜, 赵亮. TC4钛合金搅拌摩擦焊接新工艺及计算机仿真分析[J]. 铸造技术, 2016, 37(4):774-777.
Cao Wen-sheng, Zhao Liang. New friction stir welded technology and simulation analysis of TC4 titanium alloy[J]. Foundry Technology, 2016, 37(4): 774-777.
10 江旭东, 黄俊, 周琦, 等. 铝-铜异种材料对接搅拌摩擦焊温度场数值模拟[J]. 焊接学报, 2018, 39(3): 16-20.
Jiang Xu-dong, Huang Jun, Zhou Qi, et al. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. Transactions of the China Welding Institution, 2018, 39(3): 16-20.
11 张渝, 杨霖. 铝合金差厚板搅拌摩擦焊温度场及残余应力分析[J]. 热加工工艺, 2020, 49(1): 142-147.
Zhang Yu, Yang Lin. Temperature field and residual stress analysis of friction stir welding of aluminum alloy blank with different thickness[J]. Hot Working Technology, 2020, 49(1): 142-147.
12 周文静, 杜柏松, 卢小明. 铝合金搅拌摩擦焊温度场数值模拟及参数影响分析[J]. 热加工工艺, 2021, 50(7): 156-160.
Zhou Wen-jing, Du Bai-song, Lu Xiao-ming. Numerical simulation of temperature field and parameter influence analysis of friction stir welding of aluminum alloy[J]. Hot Working Technology, 2021, 50(7): 156-160.
13 丁清苗, 秦永祥, 崔艳雨. 飞机蒙皮2A12铝合金搅拌摩擦焊的数值模拟研究[J]. 热加工工艺, 2021, 50(7): 144-150.
Ding Qing-miao, Qin Yong-xiang, Cui Yan-yu. Numerical simulation study on friction stir welding of aircraft skin 2A12 aluminum alloy[J]. Hot Working Technology, 2021, 50(7): 144-150.
14 Mandal S, Williamson K. A thermomechanical hot channel approach for friction stir welding[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 190-194.
15 汪建华, 姚舜, 魏良武, 等. 搅拌摩擦焊接的传热和力学计算模型[J]. 焊接学报, 2000(4): 61-64.
Wang Jian-hua, Yao Shun, Wei Liang-wu, et al. Thermal and thermo-mechanical modeling of friction stir welding[J]. Transactions of the China Welding Institution, 2000(4): 61-64.
16 Chang W S, Bang H S, Jung S B, et al. Joint properties and thermal behaviors of friction stir welded age hardenable 6061Al alloy[J]. Materials Science Forum, 2003, 426-432: 2953-2958.
17 Zhu X K, Chao Y J. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel[J]. Journal of Materials Processing Technology, 2004, 146(2): 263-272.
18 Vuyst T D, D'Alvise L, Simar A, et al. Finite element modelling of friction stir welding of aluminium alloy plates-inverse analysis using a genetic algorithm[J]. Welding in the World, 2005, 49(3/4): 47-55.
19 Lu S X, Yan J C, Li W G, et al. Simulation on temperature field of friction stir welded joints of 2024-T4 Al[J]. Acta Metallurgica Sinica (English Letters), 2005, 18(4): 552-556.
20 王磊, 谢里阳, 张丹, 等. 搅拌摩擦焊接过程温度场动态仿真[J]. 东北大学学报:自然科学版, 2008, 29(7): 1025-1028.
Wang Lei, Xie Li-yang, Zhang Dan, et al. Dynamic simulation of temperature field during friction stir welding[J]. Journal of Northeastern University, 2008, 29(7): 1025-1028.
21 Frigaard O, Grong O, Midling O T. A process model for friction stir welding of age hardening aluminum alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32(5): 1189-1200.
22 张华, 林三宝, 吴林, 等. 镁合金AZ31搅拌摩擦焊接温度场数值模拟[J]. 宇航材料工艺, 2004(6): 58-61.
Zhang Hua, Lin San-bao, Wu Lin, et al. Temperature simulation of friction stir welded AZ31 magnesium alloy[J]. Aerospace Materials and Technology, 2004(6): 58-61.
23 徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63-66.
Xu Wei-feng, Liu Jin-he, Zhu Hong-qiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63-66.
24 Kiral B G, Tabanoglu M, Serindag H T. Finite element modeling of friction stir welding in aluminum alloys joint[J]. Mathematical and Computational Applications, 2013, 18(2): 122-131.
25 吕赞, 王琳, 岳玉梅, 等. 搅拌头压入速度和停留时间对2024铝合金搅拌摩擦焊接温度场的影响[J]. 热加工工艺, 2013, 42(1): 171-173.
Lv Zan, Wang Lin, Yue Yu-mei, et al. Effect of penetration speed and reserving time of rotational tool on temperature field of friction stir welded 2024 aluminum alloy[J]. Hot Working Technology, 2013, 42(1): 171-173.
26 马英磊, 郑洋, 张建军, 等. 铝/镁搅拌摩擦焊异质接头热-力场仿真研究[J]. 焊接技术, 2021, 50(3): 6-10.
Ma Ying-lei, Zheng Yang, Zhang Jian-jun, et al. Simulation study on the thermal-stress fields of Al/Mg dissimilar joint prepared by friction stir welding[J]. Welding Technology, 2021, 50(3): 6-10.
27 卢翔, 邵良臣, 李志勇, 等. DP590钢/AA6061-T6铝合金异种金属对接搅拌摩擦焊温度场的数值模拟[J]. 热加工工艺, 2021, 50(1): 151-155.
Lu Xiang, Shao Liang-chen, Li Zhi-yong, et al. Numerical simulation of temperature field of friction stir butt welding of DP590 steel/AA6061-T6 aluminum alloy[J]. Hot Working Technology, 2021, 50(1): 151-155.
28 Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 143-157.
29 周鹏展, 贺地求, 舒霞云, 等. 旋转速度对高强铝厚板搅拌摩擦焊温度场的影响[J]. 焊接技术, 2005(2): 10-11.
Zhou Peng-zhan, He Di-qiu, Shu Xia-yun, et al. Effect of revs on the temperature field of stir welding of thick high-strength aluminum plate[J]. Welding Technology, 2005(2): 10-11.
30 Gadakh V S, Adepu K. Heat generation model for taper cylindrical pin profile in FSW[J]. Journal of Materials Research and Technology, 2013, 2(4): 370-375.
31 Yaduwanshi D K, Bag S, Pal S. Heat transfer analyses in friction stir welding of aluminium alloy[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229(10): 1722-1733.
32 Bonifaz E A. A new thermal model in SAE-AISI 1524 friction stir welding[J]. Defect and Diffusion Forum, 2019, 390: 53-63.
33 任朝晖, 李存旭, 谢吉祥, 等. 超声辅助搅拌摩擦焊温度场及残余应力场分析[J]. 焊接学报, 2018, 39(11): 53-57.
Ren Zhao-hui, Li Cun-xu, Xie Ji-xiang, et al. Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(11): 53-57.
34 万胜强, 吴运新, 龚海, 等. 2219铝合金搅拌摩擦焊温度与残余应力热力耦合模拟[J].热加工工艺, 2019, 48(13): 159-163.
Wan Sheng-qiang, Wu Yun-xin, Gong Hai, et al. Thermal mechanical coupling simulation of temperature and residual stress in friction stir welding of 2219 aluminum alloy[J]. Hot Working Technology, 2019, 48(13): 159-163.
35 Liu W M, Yan Y F, Sun T, et al. Influence of cooling water temperature on ME20M magnesium alloy submerged friction stir welding: a numerical and experimental study[J]. International Journal of Advanced Manufacturing Technology, 2019, 105(12): 5203-5215.
36 Liu X Q, Yu Y, Yang S L, et al. A modified analytical heat source model for numerical simulation of temperature field in friction stir welding[J]. Advances in Materials Science and Engineering, 2020: 4639382.
37 李红克, 史清宇, 赵海燕, 等. 热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006(11): 81-85.
Li Hong-ke, Shi Qing-yu, Zhao Hai-yan, et al. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. Transactions of the China Welding Institution, 2006(11): 81-85.
38 安丽, 钱炜, 邹青峰, 等. 2A14-T6铝合金双轴肩搅拌摩擦焊接温度场研究[J]. 热加工工艺, 2015, 44(5): 225-229.
An Li, Qian Wei, Zou Qing-feng, et al. Research of temperature field in bobbin tool friction stir welding for 2A14-T6 Aluminum alloy[J]. Hot Working Technology, 2015, 44(5): 225-229.
39 刘震磊, 崔祜涛, 姬书得, 等. 温度峰值影响6061铝/AZ31B镁异种材料FSW接头成形的规律[J]. 焊接学报, 2016, 37(6): 23-26.
Liu Zhen-lei, Cui Hu-tao, Ji Shu-de, et al. Effect of peak temperature on formation of 6061 Al/AZ31BMg dissimilar FSW joint[J]. Transactions of the China Welding Institution, 2016, 37(6): 23-26.
40 姬书得, 温泉, 吕赞, 等. 激冷影响TC4钛合金FSW残余应力与变形的规律[J]. 中国机械工程, 2016, 27(4): 531-536.
Ji Shu-de, Wen Quan, Lv Zan, et al. Effect of Intense cooling on deformation and residual stresses for FSWed TC4 titanium alloy[J]. China Mechanical Engineering, 2016, 27(4): 531-536.
41 鄢东洋, 史清宇, 吴爱萍, 等. 搅拌摩擦焊接的热力耦合分析模型[J]. 机械工程学报, 2010, 46(16): 106-112.
Yan Dong-yang, Shi Qing-yu, Wu Ai-ping, et al. Developmental thermal-mechanical coupled analysis model for friction stir welding[J]. Journal of Mechanical Engineering, 2010, 46(16): 106-112.
42 朱智, 王敏, 张会杰, 等. 高强铝合金薄板搅拌摩擦焊残余应力及变形的热力耦合模拟[J]. 塑性工程学报, 2017, 24(2): 217-222.
Zhu Zhi, Wang Min, Zhang Hui-jie, et al. Thermal-mechanical coupled simulation on residual stress and distortion of high-strength aluminum alloy sheet after friction stir welding[J]. Journal of Plasticity Engineering, 2017, 24(2): 217-222.
43 殷鹏飞, 张蓉, 熊江涛, 等. 搅拌摩擦焊准稳态温度场数值模拟[J]. 西北工业大学学报, 2012, 30(4): 622-627.
Yin Peng-fei, Zhang Rong, Xiong Jiang-tao, et al. An effective numerical simulation of temperature distribution of friction stir welding in quasi-steady-state[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 622-627.
44 贺地求, 孙侠, 祝建明. 2024-T4铝合金薄板超声辅助搅拌摩擦焊温度场数值模拟[J]. 热加工工艺, 2014, 43(19): 162-165, 168.
He Di-qiu, Sun Xia, Zhu Jian-ming. Numerical simulation on welding temperature field of 2024-T4 aluminum ultrasonic assisted friction stir[J]. Hot Working Technology, 2014, 43(19): 162-165, 168.
45 董平, 窦作勇, 张鹏程. 铝合金搅拌摩擦焊过程热力演变的三维数值模拟[J]. 焊接学报, 2015, 36(4): 71-74.
Dong Ping, Dou Zuo-yong, Zhang Peng-cheng. 3D numerical simulation of temperature and stress evolution in friction stir welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2015, 36(4): 71-74.
46 Li W Y, Yu M, Li J L, et al. Explicit Finite Element Analysis of the Plunge Stage of Tool in Friction Stir Welding[C]∥Materials Science Forum, 10th International Symposium on Eco-Materials Processing and Design, 2009, 620-622: 233-236.
47 李文亚, 余敏, 李京龙. 质量放大因子对搅拌摩擦焊接插入过程的影响[J]. 焊接学报, 2010, 31(2): 1-4.
Li Wen-ya, Yu Min, Li Jing-long. Effects of mass scaling factor on the plunge stage of friction stir welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 1-4.
48 Buffa G, Hua J, Shivpuri R, et al. A continuum based FEM model for friction stir welding - model development[J]. Materials Science and Engineering A, 2006, 419(1/2): 389-396.
49 周明智, 雷党刚, 梁宁, 等. 搅拌摩擦焊三维粘塑性热力耦合有限元数值模拟[J]. 焊接学报, 2010, 31(2): 5-9.
Zhou Ming-zhi, Lei Dang-gang, Liang Ning, et al. 3D coupled thermo-mechanical visco-plastic finite element simulation of friction stir welding process[J]. Transactions of the China Welding Institution, 2010, 31(2): 5-9.
50 Asadi P, Mahdavinejad R A, Tutunchilar S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy[J]. Materials Science and Engineering A, 2011, 528(21): 6469-6477.
51 杜岩峰, 白景彬, 田志杰, 等. 2219铝合金搅拌摩擦焊温度场的三维实体耦合数值模拟[J]. 焊接学报, 2014, 35(8): 57-60.
Du Yan-feng, Bai Jing-bin, Tian Zhi-jie, et al. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(8): 57-60.
52 Šibalić N, Vukčević M, Janjić M, et al. A study on friction stir welding of AlSi1MgMn aluminium alloy plates[J]. Tehnicki Vjesnik, 2016, 23(3): 653-660.
53 Malik V, Sanjeev N K, Hebbar H S, et al. Finite element simulation of exit hole filling for friction stir spot welding ― a modified technique to apply practically[C]∥The 12th Global Congress on Manufacturing and Management. Procedia Engineering, Vellore, India,2014: 1265-1273.
54 Jain R, Pal S K, Singh S B. A study on the variation of forces and temperature in a friction stir welding process: a finite element approach[J]. Journal of Manufacturing Processes, 2016, 23: 278-286.
55 韩锐, 刘其鹏, 高月华, 等. 型材结构搅拌摩擦焊全热力耦合仿真分析[J]. 塑性工程学报, 2019, 26(4): 293-299.
Han Rui, Liu Qi-peng, Gao Yue-hua, et al. Fully coupled thermo-mechanical simulation analysis of friction stir welding for profile structure[J]. Journal of Plasticity Engineering, 2019, 26(4): 293-299.
56 Hirt C W, Amsden A A, Cook J L. An arbitrary lagrangian-eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253.
57 Huerta A, Liu W K. Viscous flow with large free surface motion[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 69(3): 277-324.
58 Liu W K, Chang H, Chen J S, et al. Arbitrary lagrangian-eulerian petrov-galerkin finite elements for nonlinear continus[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 68(3): 259-310.
59 Liu W K, Chen J S, Belytschko T, et al. Adaptive ALE finite elements with particular reference to external work rate on frictional interface[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93(2): 189-216.
60 Liu W K, Hu Y K, Belytschko T. ALE finite elements with hydrodynamic lubrication for metal forming[J]. Nuclear Engineering and Design, 1992, 138(1): 1-10.
61 Schmidt H, Hattel J. A local model for the thermomechanical conditions in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(1): 77-93.
62 Mandal S, Rice J, Elmustafa A A. Experimental and numerical investigation of the plunge stage in friction stir welding[J]. Journal of Materials Processing Technology, 2008, 203(1-3): 411-419.
63 Zhang Z, Zhang H W. A fully coupled thermo-mechanical model of friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2008, 37(3/4): 279-293.
64 张昭, 刘会杰. 搅拌头形状对搅拌摩擦焊材料变形和温度场的影响[J]. 焊接学报, 2011, 32(3): 5-8.
Zhang Zhao, Liu Hui-jie. Effect of pin shapes on material deformation and temperature field in friction stir welding[J]. Transactions of the China Welding Institution, 2011, 32(3): 5-8.
65 张昭, 陈金涛, 王晋宝, 等. 基于仿真的搅拌摩擦焊连接AA2024-T3不同板厚过程对比[J]. 机械工程学报, 2011, 47(18): 23-27.
Zhang Zhao, Chen Jin-tao, Wang Jin-bao, et al. Simulation based comparison of friction stir welding of AA2024-T3 plates with different thicknesses[J]. Journal of Mechanical Engineering, 2011, 47(18): 23-27.
66 Iordache M, Badulescu C, Niţu E, et al. Numerical simulation of friction stir welding (FSW) process based on ABAQUS environment[C]∥The 6th International Conference on Advanced Materials and Structures. Solid State Phenomena,Timişoara, Romania, 2016, 254: 272-277.
67 刘春宁, 郁志凯, 张艳辉, 等. 搅拌针几何形状对搅拌摩擦焊温度场的影响[J]. 焊接技术, 2018, 47(6): 6,73-76.
Liu Chun-ning, Yu Zhi-kai, Zhang Yan-hui, et al. Effect of pin shapes on temperature field in friction stir welding[J]. Welding Technology, 2018, 47(6):6,73-76.
68 Meyghani B, Awang M B, Momeni M, et al. Development of a finite element model for thermal analysis of friction stir welding (FSW)[C]∥The 11th Curtin University Technology, Science and Engineering International Conference, Sarawak, Malaysia, 2019: No.012101.
69 Noh W F. CEL: a time-dependent two-space-dimension coupled Eulerian-Lagrangian code[D]. Oakland: University of California, 1963.
70 Al-Badour F, Merah N, Shuaib A, et al. Coupled eulerian lagrangian finite element modeling of friction stir welding processes[J]. Journal of Materials Processing Technology, 2013, 213(8): 1433-1439.
71 Al-Badour F, Merah N, Shuaib A, et al. Thermo-mechanical finite element model of friction stir welding of dissimilar alloys[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(5-8): 607-617.
72 Iordache M, Badulescu C, Iacomi D, et al. Numerical simulation of the friction stir welding process using coupled eulerian lagrangian method[J]. IOP Conference Series: Materials Science and Engineering, 2016, 145(2): 022017.
73 马核, 田志杰, 熊林玉, 等. 2A14-T6铝合金搅拌摩擦焊温度场及黏流层数值模拟分析[J]. 航空制造技术, 2018, 61(8): 55-61.
Ma He, Tian Zhi-jie, Xiong Lin-yu, et al. Thermal behavior and pre-molten viscousness layer simulation of friction stir welding on 2A14-T6 aluminum alloy[J]. Aviation Welding Technology, 2018, 61(8): 55-61.
74 朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294-299.
Zhu Zhi, Wang Min, Zhang Hui-jie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. Chinese Journal of Nonferrous Metals, 2018, 28(2): 294-299.
75 Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2019, 100(9-12): 2679-2687.
76 Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly notices of the royal astronomical society, 1977, 181(3): 375-389.
77 Tartakovsky A, Grant G, Sun X, et al. Modeling of friction stir welding (FSW) process with smooth particle hydrodynamics (SPH)[C]∥SAE Paper, 2006-01-1394.
78 Pan W X, Li D S, Tartakovsky A M, et al. A new smoothed particle hydrodynamics non-newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy[J]. International Journal of Plasticity, 2013, 48: 189-204.
79 Sellars C, Tegart W. Hot workability[J]. International Metallurgical Reviewers, 1972, 17: 1-24.
80 Bagheri B, Abbasi M, Abdolahzadeh A, et al. Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH)[J]. Archive of Applied Mechanics, 2020, 90(10): 2275-2296.
81 Bagheri B, Abdollahzadeh A, Abbasi M, et al. Numerical analysis of vibration effect on friction stir welding by smoothed particle hydrodynamics (SPH)[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(1/2): 209-228.
82 Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421-434
83 Yoshikawa G, Miyasaka F, Hirata Y, et al. Development of numerical simulation model for FSW employing particle method[J]. Science and Technology of Welding and Joining, 2012, 17(4): 225-263.
84 Schmitter D, Zylla I M. Modelling friction stir welding with thermally coupled fluid dynamics [C]//The 2th International Conference on Thermal Process Modelling and Computer, Nancy, France, 2004: 677-680.
85 冯天涛, 张晓辉. 三维搅拌摩擦焊接传热与塑性流动分析模型[J]. 焊接学报, 2013, 34(7): 105-108.
Feng Tian-tao, Zhang Xiao-hui. Three dimensional model for heat transfer and plastic flow of friction stir welding[J]. Transactions of the China Welding Institution, 2013, 34(7): 105-108.
86 冯莹莹, 赵双, 刘照松, 等. 7075铝合金搅拌摩擦焊模拟与实验研究[J]. 东北大学学报:自然科学版, 2021, 42(3): 340-346.
Feng Ying-ying, Zhao Shuang, Liu Zhao-song, et al. Experiment study and simulation for friction stir welding process of 7075 aluminum alloy[J]. Journal of Northeastern University, 2021, 42(3): 340-346.
87 Zhai M, Wu C S, Su H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding[J]. Journal of Manufacturing Processes, 2020, 59: 98-112.
88 Eyvazian A, Hamouda A, Tarlochan F, et al. Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel[J]. Journal of Materials Research and Technology, 2020, 9(3): 3767-3781.
89 杨金帅, 刘含莲, 黄传真, 等. 基于Fluent的钢-铝异种金属搅拌摩擦焊数值模拟研究[J]. 焊接技术, 2020, 49(8): 11-15, 105.
Yang Jin-shuai, Liu Han-lian, Huang Chuan-zhen, et al. Numerical simulation of friction stir welding between steel and aluminum dissimilar metal based on Fluent[J]. Welding Technology, 2020, 49(8): 11-15, 105.
90 Kadian A K, Biswas P. Effect of tool pin profile on the material flow characteristics of AA6061[J]. Journal of Manufacturing Processes, 2017, 26: 382-392.
91 Yang Z Y, Wang Y L, Domblesky J P, et al. Development of a heat source model for friction stir welding tools considering probe geometry and tool/workpiece interface conditions[J]. International Journal of Advanced Manufacturing Technology, 2021, 114(5/6): 1787-1802.
92 Su H, Wu C S. Numerical simulation for the optimization of polygonal pin profiles in friction stir welding of aluminum[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1065-1078.
93 Andrade D G, Leitão C, Dialami N, et al. Analysis of contact conditions and its influence on strain rate and temperature in friction stir welding[J]. International Journal of Mechanical Sciences, 2021, 191: 106095.
94 Babu S D D, Sevvel P, Kumar R S. Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding of AZ80A Mg alloy plates[J]. Journal of Mechanical Science and Technology, 2020, 34(10): 4239-4250.
95 Mohan R, Jayadeep U B, Manu R. CFD modelling of ultra-high rotational speed micro friction stir welding[J]. Journal of Manufacturing Processes, 2021, 64: 1377-1386.
96 赵慧慧, 封小松, 熊艳艳, 等. 铝合金6061高转速无倾角微搅拌摩擦焊温度分布研究[J]. 电焊机, 2014, 44(4): 71-77.
Zhao Hui-hui, Feng Xiao-song, Xiong Yan-yan, et al. Study on the temperature distribution of 6061 aluminium alloy micro friction stir welding featured high speed without inclination[J]. Electric Welding Machine, 2014, 44(4): 71-77.
97 王希靖, 郭瑞杰, 阿荣, 等. 搅拌摩擦焊接头的温度检测[J]. 电焊机, 2004, 34(1): 22-23.
Wang Xi-jing, Guo Rui-jie, Rong A, et al. Temperature measure for joint of friction stir welding[J]. Electric Welding Machine, 2004, 34(1): 22-23.
98 Hwang Y W, Kang Z W, Chiou Y C, et al. Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7): 778-787.
99 Pires J P, Cota B S, Bracarense A Q, et al. Temperature distribution prediction in 5052 H34 aluminum alloy joints welded by friction stir welding process[J]. Soldagem E Inspecao, 2018, 23(2): 247-263.
100 鄢东洋, 史清宇, 吴爱萍, 等. 搅拌摩擦焊接过程的试验测量及分析[J]. 焊接学报, 2010, 31(2): 67-70.
Yan Dong-yang, Shi Qing-yu, Wu Ai-ping, et al. Measurement and analysis of friction stir welding process[J]. Transactions of the China Welding Institution, 2010, 31(2): 67-70.
101 芦笙, 贾晓丹, 张春艳, 等. 镁合金搅拌摩擦焊温度场及接头组织形貌特征研究[J]. 材料工程, 2009(): 9-13.
Lu Sheng, Jia Xiao-dan, Zhang Chun-yan, et al. Temperature field and microstructure of magnesium alloy fabricated by FSW[J]. Journal of Materials Engineering, 2009(Sup.1): 9-13.
102 Lu A, Lu S, Chen S J, et al. Study on the flow field of friction stir welding of AZ31 magnesium alloy based on the temperature variation[C]∥The 12th International Conference on Advanced Materials, Materials Science Forum, Qingdao,China,2014, 789: 282-289.
103 李于朋, 孙大千, 宫文彪. 6082-T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报:工学版, 2019, 49(3): 836-841.
Li Yu-peng, Sun Da-qian, Gong Wen-biao. Temperature fields in bobbin-tool friction stir welding for 6082-T6 aluminum alloy sheet[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
104 Maeda M, Liu H, Fujii H, et al. temperature field in the vicinity of FSW-Tool during friction stir welding of aluminium alloys[J]. Welding in the World, 2005, 49(3-4): 69-75.
105 周细应, 柯黎明, 刘鸽平, 等. 搅拌摩擦焊的温度分析[J]. 新技术新工艺, 2003, 10: 32-33.
Zhou Xi-ying, Ke Li-ming, Liu Ge-ping, et al. Temperature analysise of friction stir welding[J]. New Technology and New Process, 2003, 10: 32-33.
106 苏晓莉, 王快社, 周俊杰. 铝合金搅拌摩擦焊温度场检测[J]. 焊接技术, 2006, 35(1): 12-14, 4.
Su Xiao-li, Wang Kuai-she, Zhou Jun-jie. Temperature field measurement of aluminium alloy friction stir welding[J]. Welding Technology, 2006, 35(1): 12-14, 4.
107 王红宾, 白钢, 付春坤, 等. 7050铝合金搅拌摩擦焊接头软化区温度检测[J]. 航空精密制造技术, 2012, 48(4): 39-41.
Wang Hong-bin, Bai Gang, Fu Chun-kun, et al. Temperature detection of joint softening area of friction stir welding of 7050 aluminum alloy[J]. Aviation Precision Manufacturing Technology, 2012, 48(4): 39-41.
108 张忠科, 王丽, 王希靖, 等. 10 mm厚LF2铝合金搅拌摩擦焊温度分布及组织分析[J]. 热加工工艺, 2006, 35(19): 8-10.
Zhang Zhong-ke, Wang Li, Wang Xi-jing, et al. Analysis on temperature distribution and microstructure of friction stir welding for 10mm LF2 aluminum alloy plate[J]. Hot Working Technology, 2006, 35(19): 8-10.
109 Chao Y J, Liu S, Chien C. Friction stir welding of al 6061‐T6 thick plates: part i ‐ experimental analyses of thermal and mechanical phenomena[J]. Journal of the Chinese Institute of Engineers, 2008, 31(5): 757-767.
110 Shibayanagi T, Mizushima K, Yoshikawa S, et al. Friction stir spot welding of pure aluminum sheet in view of high temperature deformation[J]. Transactions of JWRI, 2011, 40(2): 1-5.
111 李敬勇, 赵阳阳, 亢晓亮. 搅拌摩擦焊过程中搅拌头温度场分布特征[J]. 焊接学报, 2014, 35(3): 66-70.
Li Jing-yong, Zhao Yang-yang, Kang Xiao-liang. Characteristic of temperature distributions in stirring tools during friction stir welding[J]. Transactions of the China Welding Institution, 2014, 35(3): 66-70.
112 赵阳阳, 李敬勇, 李兴学. 搅拌头材质对搅拌摩擦焊温度场的影响[J]. 航空材料学报, 2014, 34(2): 35-39.
Zhao Yang-yang, Li Jing-yong, Li Xing-xue. Influence of stirring tool material on temperature fields of friction stir welding[J]. Journal of Aeronautical Materials, 2014, 34(2): 35-39.
113 Fehrenbacher A, Schmale J R, Zinn M R, et al. Measurement of tool-workpiece interface temperature distribution in friction stir welding[J]. Journal of Manufacturing Science and Engineering, 2014, 136(2): No.021009.
114 Zhai M, Wu C S, Su H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding[J]. Journal of Manufacturing Processes, 2020, 59: 98-112.
115 王寒, 王庆霞, 杨建国, 等. 搅拌摩擦焊焊接温度检测系统的研制[J]. 机械设计与制造, 2016(12): 143-145, 149.
Wang Han, Wang Qing-xia, Yang Jian-guo, et al. Design and development of temperature detection system for friction stir welding[J]. Machinery Design & Manufacture, 2016(12): 143-145, 149.
116 Covington J L, Robison W, Webb B W. Experimental characterization of tool heating during friction stir welding[J]. Trends in Welding Research, 2005: 179-184.
117 鲍宏伟, 李京龙, 高大路, 等. 纯铅搅拌摩擦焊接轴肩温度变化规律研究[J]. 电焊机, 2012, 42(2): 54-56.
Bao Hong-wei, Li Jing-long, Gao Da-lu, et al. Study on temperature distributions within the shoulder during friction stir welding of pure lead[J]. Electric Welding Machine, 2012, 42(2): 54-56.
118 Archimede F, Milena M, Giuseppe P, et al. Similar and dissimilar FSWed Joints in lightweight alloys: heating distribution assessment and IR thermography monitoring for on-line quality control[J]. Key Engineering Materials, 2013, 554-557: 1055-1064.
119 Lambiase F, Paoletti A, Ilio A D. Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 337-346.
120 万心勇, 胡志力, 庞秋, 等. 铝合金高速FSW热输入模型及焊缝峰值温度研究[J]. 稀有金属材料与工程, 2019, 48(6): 1990-1995.
Wan Xin-yong, Hu Zhi-li, Pang Qiu, et al. Thermal model and peak temperature in high-travel velocity friction stir welding of aluminum alloy[J]. Rare Metal Materials and Engineering, 2019, 48(6): 1990-1995.
121 Sheikh-Ahmad J Y, Ali D S, Deveci S, et al. Friction stir welding of high density polyethylene-Carbon black composite[J]. Journal of Materials Processing Technology, 2019, 264: 402-413.
122 张玉存, 崔妍, 付献斌, 等. 搅拌摩擦焊核心区温度在线检测方法[J]. 中国机械工程, 2019, 30(14): 1653-1657.
Zhang Yu-cun, Cui Yan, Fu Xian-bin, et al. On-line temperature detection method in core area of friction stir welding[J]. China Mechanical Engineering, 2019, 30(14): 1653-1657.
123 Casavola C, Cazzato A, Moramarco V, et al. Temperature field in FSW process: experimental measurement and numerical simulation[C]∥Conference Proceedings of the Society for Experimental Mechanics Series, Garden,USA, 2015: 177-186.
124 Serio L M, Palumbo D, Galietti U, et al. Monitoring of the friction stir welding process by means of thermography[J]. Nondestructive Testing and Evaluation, 2016, 31(4): 371-383.
125 Benavides S, Li Y, Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum[J]. Scripta Materialia, 1999, 41(8): 809-815.
126 Selvamani S T, Vigneshwar M, Divagar S. Effects of heat transfer on microhardness and microstructure of friction stir welded AA 6061 aluminum alloy[J]. International Journal of Engineering Research in Africa, 2016, 21: 102-109.
[1] 吴迪,耿文华,李洪梅,孙大千. 铝/钢等离子弧熔⁃钎焊接头界面电子背散射衍射分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1331-1337.
[2] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[3] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
[4] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[5] 庄蔚敏,王恩铭. 随机壁厚三维实体泡沫铝建模及压缩仿真[J]. 吉林大学学报(工学版), 2022, 52(8): 1777-1785.
[6] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[7] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[8] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[9] 孙健,彭斌,朱兵国. 新型无油涡旋压缩机内部热力学特性和性能测试[J]. 吉林大学学报(工学版), 2022, 52(12): 2778-2787.
[10] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[11] 商拥辉,徐林荣,刘维正,蔡雨. 重载铁路改良土和A组填料过渡段的动力特性[J]. 吉林大学学报(工学版), 2021, 51(6): 2128-2136.
[12] 惠迎新,孙晓荣,王红雨,高晨. 预制T梁早期水化热温度效应及梁端开裂机理[J]. 吉林大学学报(工学版), 2021, 51(5): 1734-1741.
[13] 于征磊,陈立新,徐泽洲,信仁龙,马龙,金敬福,张志辉,江山. 基于增材制造的仿生防护结构力学及回复特性分析[J]. 吉林大学学报(工学版), 2021, 51(4): 1540-1547.
[14] 于征磊,信仁龙,陈立新,朱奕凝,张志辉,曹青,金敬福,赵杰亮. 仿蜂窝防护结构的承载特性[J]. 吉林大学学报(工学版), 2021, 51(3): 1140-1145.
[15] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!