吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1714-1721.doi: 10.13229/j.cnki.jdxbgxb.20230785

• 计算机科学与技术 • 上一篇    下一篇

基于级联嵌套U-Net的红外小目标检测

薛雅丽1(),俞潼安1,崔闪2,周李尊1   

  1. 1.南京航空航天大学 自动化学院,南京 210000
    2.上海机电工程研究所,上海 201109
  • 收稿日期:2023-07-26 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:薛雅丽(1974-),女,副教授,博士. 研究方向:目标检测及识别.E-mail:xueyali@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(62073164);航天集成基金项目(U22B6001);上海市航天科技创新基金项目(SAST2022-013)

Infrared small target detection based on cascaded nested U-Net

Ya-li XUE1(),Tong-an YU1,Shan CUI2,Li-zun ZHOU1   

  1. 1.College of Automation Engineering,Nanjing Univercity of Aeronautics and Astronautics,Nanjing 210000,China
    2.Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,China
  • Received:2023-07-26 Online:2025-05-01 Published:2025-07-18

摘要:

针对复杂场景下红外小目标尺寸差异大、检测效果欠佳的问题,提出了一种基于级联嵌套U-Net的红外小目标检测方法。首先,为解决不同场景下小目标尺寸差异大的问题,搭建了3种深度的U-Net网络,并将3个U-Net网络以级联嵌套的方式组成检测模型;其次,引入对比度信息抽取模块,以进一步丰富特征信息,抑制密集背景噪声的干扰;最后,将所提出的算法与5种主流的算法进行比较。实验结果表明:本文算法性能优于其他算法,并且平均交并比、精确率和召回率分别达到了78.61%、93.36%和81.78%。

关键词: 信息处理技术, 红外小目标, 对比度信息, 注意力机制, 检测

Abstract:

Aiming at the problem of large size differences in infrared small targets and poor detection results in complex scenes, an infrared small target detection method based on cascaded nested U-Net is proposed. First, in order to solve the problem of large size differences between small targets in different scenarios, three depths of U-Net networks were built, and the three U-Net networks were cascaded and nested to form a detection model; secondly, contrast was used information extraction module to further enrich feature information and suppress the interference of dense background noise; finally, the proposed algorithm is compared with five mainstream algorithms. The experimental results show that the performance of this algorithm is better than other algorithms, and the average intersection and union ratio, the precision rate and recall rate reached 78.61%, 93.36% and 81.78% respectively.

Key words: information processing technology, infrared small target, contrast information, attention mechanism, detection

中图分类号: 

  • TP391

图1

基于CNU-Net的红外小目标检测框图"

图2

特征提取模块"

图3

通道空间注意力机制模块"

图4

滑动窗口"

图5

对比度特征抽取模块"

图6

不同层数U-Net的检测性能"

表1

消融实验结果 (%)"

实验序号NSCSCFEMPrecisionRecallmIoU
1×90.1178.6674.68
2×91.1479.6475.19
3××88.0476.8371.16
4××86.4774.8968.94
593.3681.7878.61

图7

CFEM输入输出的可视化特征图"

图8

有无嵌套结构的CNU-Net识别目标效果对比图"

表2

对比实验结果"

方法mIoU/%Precision/%Recall/%Inference time
Top-hat9.0578.030.39
PSTNN32.9973.4835.27
LCM4.5355.220.45
MDvsFA63.8386.9668.330.021
ALC-Net74.6989.9480.130.032
CNU-Net78.6193.3681.780.028

图9

不同算法的ROC曲线"

图10

不同算法的红外小目标图像检测结果"

[1] 查月, 汤晔. 红外海面小目标检测算法综述[J]. 宇航计测技术, 2022, 42(6): 57-65.
Zha Yue, Tang Ye. Review of infrared sea surface small target detection algorithm [J]. Journal of Astronautic Metrology and Measurement, 2022, 42(6): 57-65.
[2] Rivest J F, Fortin R. Detection of dim targets in digital infrared imagery by morphological image processing[J]. Optical Engineering, 1996, 35(7): 1886-1893.
[3] Chen C L P, Li H, Wei Y, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581.
[4] 张文杰, 熊庆宇. 基于对比度与空间位置特征的显著性区域检测[J]. 吉林大学学报: 工学版, 2015, 45(5): 1709-1716.
Zhang Wen-jie, Xiong Qing-yu. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1709-1716.
[5] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 7485869.
[6] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779-788.
[7] Wang H, Zhou L, Wang L. Miss detection vs false alarm: adversarial learning for small object segmentation in infrared images[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8509-8518.
[8] Deng C, Wang M, Liu L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
[9] Goodfellow I, Pouget A J, Mirza M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 2: 2672-2680.
[10] Wu X, Hong D, Chanussot J. UIU-Net: U-Net in U-Net for infrared small object detection[J]. IEEE Transactions on Image Processing, 2022, 32: 364-376.
[11] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 2015: 234-241.
[12] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117-2125.
[13] Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
[14] Dai Y, Wu Y, Zhou F, et al. Asymmetric contextual modulation for infrared small target detection[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 950-959.
[15] Li B, Xiao C, Wang L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758.
[16] Dai Y, Wu Y, Zhou F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824.
[17] Sun Y, Yang J, An W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5): 3737-3752.
[1] 田丽,贾煜辉. 改进YOLOv5s算法的高光谱遥感图像目标检测[J]. 吉林大学学报(工学版), 2025, 55(5): 1742-1748.
[2] 侯越,郭劲松,林伟,张迪,武月,张鑫. 分割可跨越车道分界线的多视角视频车速提取方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1692-1704.
[3] 张汝波,常世淇,张天一. 基于深度学习的图像信息隐藏方法综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1497-1515.
[4] 王军,司昌馥,王凯鹏,付强. 融合集成学习技术和PSO-GA算法的特征提取技术的入侵检测方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1396-1405.
[5] 张彬桥,吴健. 基于跟踪-学习-检测算法的四旋翼无人机自主降落姿态控制方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1419-1425.
[6] 聂为之,尹斐,苏毅珊. 任务驱动下成像声呐水下目标识别方法综述[J]. 吉林大学学报(工学版), 2025, 55(4): 1163-1175.
[7] 才华,王玉瑶,付强,马智勇,王伟刚,张晨洁. 基于注意力机制和特征融合的语义分割网络[J]. 吉林大学学报(工学版), 2025, 55(4): 1384-1395.
[8] 郭宁,胡小晨,董德存. 基于改进YOLO算法的地铁车厢客流检测方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1258-1265.
[9] 程光,李沛霖. 基于MSE改进BiLSTM网络算法的工业互联网异常流量时空融合检测[J]. 吉林大学学报(工学版), 2025, 55(4): 1406-1411.
[10] 张河山,范梦伟,谭鑫,郑展骥,寇立明,徐进. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J]. 吉林大学学报(工学版), 2025, 55(4): 1307-1318.
[11] 孙淑琴,祁鑫,袁正海,李再华,唐晓骏. 基于耦合混沌系统阵列的电力系统微弱谐波检测方法[J]. 吉林大学学报(工学版), 2025, 55(3): 1082-1092.
[12] 李学军,权林霏,刘冬梅,于树友. 基于Faster-RCNN改进的交通标志检测算法[J]. 吉林大学学报(工学版), 2025, 55(3): 938-946.
[13] 李扬,李现国,苗长云,徐晟. 基于双分支通道先验和Retinex的低照度图像增强算法[J]. 吉林大学学报(工学版), 2025, 55(3): 1028-1036.
[14] 张兰芳,李根泽,刘婷宇,余博. 局部多车影响下跟驰行为机理及建模[J]. 吉林大学学报(工学版), 2025, 55(3): 963-973.
[15] 单泽彪,薛泓垚,刘小松,姚瑞广,陈广秋. Alpha稳定分布噪声下基于近似l0范数稀疏重构的波达方向估计[J]. 吉林大学学报(工学版), 2025, 55(3): 1093-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋传学,赵彤航 . 轿车车内噪声测量分析及控制方法
[J]. 吉林大学学报(工学版), 2007, 37(05): 1000 -1004 .
[2] 于国飞, , , 孔德文 , 马士泽 , 吴光强. 应用ADAMS/CAR二次开发模块[J]. 吉林大学学报(工学版), 2005, 35(06): 582 -0586 .
[3] 姜桂艳,常安德,张玮. 基于GPS浮动车的路段行程时间估计方法比较[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 182 -0186 .
[4] 王德辉,尚广瑞,任露泉 . Cu-Zn合金仿生耦合亲水表面非线性数学模型[J]. 吉林大学学报(工学版), 2008, 38(01): 105 -109 .
[5] 王德民,吴志强,胡 平,刘 昕,李运兴. 分布式模具设计事例库关键技术[J]. 吉林大学学报(工学版), 2005, 35(03): 314 -318 .
[6] 徐涛,葛长江,左文杰,吉野陈萌,徐天爽. 基于非正交同位网格下求解N-S方程的快速算法[J]. 吉林大学学报(工学版), 2009, 39(06): 1521 -1526 .
[7] 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936 -942 .
[8] 郭震,于红英,滑忠鑫,赵娣. 刚性折纸机构运动分析及折叠过程仿真[J]. 吉林大学学报(工学版), 2020, 50(1): 66 -76 .
[9] 武立群,张亮亮. 基于数据挖掘技术的桥梁结构健康状态检测[J]. 吉林大学学报(工学版), 2020, 50(2): 565 -571 .
[10] 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668 -677 .