吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 772-780.doi: 10.13229/j.cnki.jdxbgxb20191177

• 农业工程·仿生工程 • 上一篇    

工业大麻收割机切割⁃输送关键部件作业参数优化

黄继承1,2(),沈成2,3,纪爱敏1(),李显旺2,张彬2,3,田昆鹏2,刘浩鲁2   

  1. 1.河海大学 机电工程学院,江苏 常州 2130221
    2.农业农村部 南京农业机械化研究所,南京 210014
    3.东南大学 机械工程学院,南京 211189
  • 收稿日期:2019-12-23 出版日期:2021-03-01 发布日期:2021-02-09
  • 通讯作者: 纪爱敏 E-mail:huangjicheng@caas.cn;jiam@hhuc.edu.cn
  • 作者简介:黄继承(1985-),男,博士研究生.研究方向:农业收获机械装备.E-mail: huangjicheng@caas.cn
  • 基金资助:
    中国农业科学院基本科研业务费专项项目(S201932);国家自然科学基金项目(51905283);国家现代农业产业技术体系岗位任务项目(CARS-16-E20);国家重点研发计划项目(2016YFD0701405-02)

Optimization of cutting⁃conveying key working parameters of hemp harvester

Ji-cheng HUANG1,2(),Cheng SHEN2,3,Ai-min JI1(),Xian-wang LI2,Bin ZHANG2,3,Kun-peng TIAN2,Hao-lu LIU2   

  1. 1.College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China
    2.Nanjing Research Institute for Agricultural Mechanization,Ministry of Agriculture,Nanjing 210014,China
    3.School of Mechanical Engineering,Southeast University,Nanjing 211189,China
  • Received:2019-12-23 Online:2021-03-01 Published:2021-02-09
  • Contact: Ai-min JI E-mail:huangjicheng@caas.cn;jiam@hhuc.edu.cn

摘要:

针对工业大麻收割机茎秆切割效率低、输送率低,以及关键作业参数研究空白的现状,本文结合工业大麻茎秆物理特性,运用中心组合试验设计理论开展关键部件作业参数试验与优化,重点研究工业大麻收割机切割-输送作业关键参数中切割速度、链条输送速度、切割位置与夹持点水平间距对切割效率、输送率的影响规律,并以切割效率、输送率为响应指标进行多目标优化。首先对主产区工业大麻茎秆物理和机械力学特性进行研究,并进行与收割相关的物理参数测定,然后采用二次正交旋转组合试验方法设计试验,并用Design-Expert进行数据处理,建立切割效率、输送率的回归数学模型并进行方差分析。通过响应曲面方法分析各因素交互作用对切割效率、输送率的影响,并根据优化目标的重要程度(输送率较切割效率更重要)对回归模型进行多目标优化,得出工业大麻收割机切割-输送关键作业参数的最优组合如下:切割速度为1.33 m/s,链条输送速度为1.35 m/s,切割与夹持点水平距离为63.9 mm。此时切割效率最高、输送率最高,其值分别为44.35 株/s、93.93%。最优参数组合下田间试验切割效率为44.7 株/s、输送率为92.21%,作业性能大幅提升,达到了较为理想的效果。

关键词: 农业机械, 工业大麻, 收割机, 多目标优化, 响应曲面法

Abstract:

In order to improve the cutting efficiency and conveyor rate of hemp harvester, the central composite design experiments were conducted to optimize the working parameters. Firstly, the physical and mechanical properties of hemp stem were studied. Based on composite experiment methods of quadratic orthogonal rotation, the effects of key components' main working parameters, including cutting speed, chain conveyor speed, horizontal distance between cutting and clamping point, on cutting efficiency and convey rate were analyzed. The data were analyzed based on the Design-Expert software. The regression models of cutting efficiency and convey rate were built, and corresponding variance analysis was conducted. The response surface method was utilized to analyze the effects of factors' interaction on the cutting efficiency and conveyor rate, and the multi-objective optimizations were conducted to determine the working parameters for the best cutting efficiency and conveyor rate. The optimal combination of the working parameters of the hemp harvester are the cutting speed of 1.33 m/s, the chain conveyor speed of 1.35 m/s, and the horizontal distance between cutting and clamping point of 63.9 mm. Under this optimal combination, the cutting efficiency and conveyor rate are 44.35 stalks/s and 93.93%, respectively. The field verification test was conducted. With the optimal parameters, and the cutting efficiency and conveyor rate are 44.7 stalks/s and 92.21%, respectively, closing to the model predicted results and greatly improving the harvester performance. The study provides the scientific basis for key components' working parameters optimization of hemp harvester.

Key words: agricultural machinery, hemp, harvester, multi-objective optimization, response surface methodology

中图分类号: 

  • S225.5

表1

工业大麻收割机结构参数及工作参数"

参数数值
外形尺寸(长×宽×高)/(mm×mm×mm)3400×2100×2300
底盘动力/kW74.5
割幅/mm1 600
割茬高度/mm≤100
作业速度/(m·s-1)0.45~1.0
生产率/(hm2·h-1)0.25~0.4

图1

割台结构示意图1-拨禾扶禾装置;2-下链条输送装置;3-上链条输送装置;4-液压马达;5-割台升降油缸;6-割台机架;7-压簧;8-双动刀往复切割器"

图2

工业大麻茎秆外形及组成结构图"

表2

试验因素水平编码表"

因素试验水平
-101
切割速度A/(m·s-1)1.01.21.4
链条输送速度B/(m·s-1)0.91.21.5
切割与夹持点水平距离C/mm306090

表3

验设计方案及结果"

试验编号切割速度 /(m·s-1)链条输 送速度 /(m·s-1)切割与夹持点水平距离/mm切割效率 /(株·s-1)输送率 /%
1-10-13191.54
21104491.26
30-1-14180.50
40-113975.60
50114486.54
60004093.87
710-14191.32
8-1-103283.24
91-103881.20
100004295.50
110004093.20
120004394.58
131014686.10
14-1103292.26
15-1013188.82
1601-14284.68
170004293.36

表4

回归方程方差分析结果"

方差来源切割效率Y1/(株·s-1输送率Y2/%
平方和自由度dfF显著水平P平方和自由度dfF显著水平P
模型361.08917.070.000 6**526.51947.820.000 1**
A231.13198.35<0.000 1**4.4713.650.097 5
B18.0017.660.027 8*146.211119.51<0.000 1**
C3.1311.330.286 715.07112.320.009 9**
AB9.0013.830.091 20.2710.220.652 6
AC6.2512.660.146 91.5611.280.295 7
BC4.0011.700.233 311.4219.340.018 4*
A288.13137.500.000 5**0.2710.220.655 0
B20.4410.190.676 6228.301186.62<0.000 1**
C20.7610.320.587 2101.45182.92<0.000 1**
残差16.4578.567
失拟项9.2531.710.301 54.9631.840.280 6
误差7.2043.604
总和377.5316535.0816

图3

交互因素对切割效率的影响"

图4

交互因素对输送率的影响"

图5

工业大麻收割机田间试验"

1 张晓艳, 孙宇峰, 韩承伟, 等. 我国工业大麻产业发展现状及策略分析[J]. 特种经济动植物, 2019, 22(8): 26-28.
2 郭丽, 王明泽, 王殿奎, 等. 工业大麻综合利用研究进展与前景展望[J]. 黑龙江农业科学, 2014(8): 132-134.
Guo Li, Wang Ming-ze, Wang Dian-kui, et al. Research progress and prospect of comprehensive utilization of industrial hemp[J]. Heilongjiang Agricultural Sciences, 2014(8): 132-134.
3 Cassano R, Trombino S, Ferrarelli T, et al. Hemp fiber(cannabis sativa L.)derivatives with antibacterial and chelating properties[J]. Cellulose, 2013, 20(1): 547-557.
4 Kumar N, Singh T, Grewal J S, et al. Experimental investigation on the physical,mechanical and tribological properties of hemp fiber-based non-asbestos organic brake friction composites[J/OL]. [2019-03-29] 91/ab2399#references
5 Musio S, Mussig J, Amaducci S. Optimizing hemp fiber production for high performance composite applications[J]. Frontiers in Plant Science, 2018, 9: 1-14.
6 Malomo S A, Aluko R E. Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides[J/OL]. [2019-03-15]
7 Rodriguez-Martin N M, Toscano R, Villanueva A, et al. Neuroprotective protein hydrolysates from hemp (cannabis sativa L.) seeds[J]. Food & Function, 2019, 10: 6732-6739.
8 唐斌, 李显旺, 袁建宁, 等. 工业大麻微型收获机械的技术与发展分析[J]. 中国农机化学报, 2018, 39(2): 17-21.
Tang Bin, Li Xian-wang, Yuan Jian-ning, et al. Analysis of technology and development for hemp micro-harvesting machinery[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 17-21.
9 黄继承, 李显旺, 张彬, 等. 4LMZ160型履带式苎麻联合收割机的研究[J]. 农机化研究, 2015(9): 155-158, 163.
Huang Ji-cheng, Li Xian-wang, Zhang Bin, et al. Research on the 4LMZ160 crawler ramie combine harvester[J]. Journal of Agricultural Mechanization Research, 2015(9): 155-158, 163.
10 吕江南, 马兰, 刘佳杰, 等. 黑龙江省工业大麻产业发展及收获加工机械情况调研[J]. 中国麻业科学, 2017, 39(2): 94-102.
Lv Jiang-nan, Ma Lan, Liu Jia-jie, et al. The investigation on the development of industrial hemp and its harvesting machinery of Heilongjiang province[J], Plant Fiber Sciences in China, 2017, 39(2): 94-102.
11 朱浩, 张治国, 于革. 汉麻割晒机研制与试验[J]. 农业工程, 2018, 8(2): 95-98.
Zhu Hao, Zhang Zhi-guo, Yu Ge. Development and test of hemp swather[J]. Agricultural Engineering, 2018, 8(2): 95-98.
12 熊和平. 2016-2017国家麻类产业技术发展报告[M]. 北京: 中国农业科学技术出版社, 2019.
13 Zhou Y, Li X W, Shen C, et al. Experimental analysis on mechanical model of industrial hemp stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 22-29.
14 Shen C, Zhang B, Li X W, et al. Bench cutting tests and analysis for harvesting hemp stalk[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 56-67.
15 Kakitis A, Berzins U, Berzins R, et al. Cutting properties of hemp fibre[J]. Engineering for Rural Development, 2012, 11: 245-250.
16 Adamovics A, Kakitis A. Productivity and tensile endurance determination of hemp fiber[J]. Chemical Engineering Transactions, 2013, 35: 805-810.
17 马兰, 刘佳杰, 周韦, 等. 工业大麻干茎秆轴向压缩力学特性试验研究[J]. 中国农机化学报, 2018, 39(11): 34-40, 50.
Ma Lan, Liu Jia-jie, Zhou Wei, et al. Test of axial mechanical compressive properties for industial hemp dry stalk[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(11): 34-40, 50.
18 Huang J C, Shen C, Li X W, et al. Design and tests of hemp harvester[J]. International Agricultural Engineering Journal, 2017, 26(2): 117-127.
19 Pari L, Alfano V, Scarfone A. An innovative harvesting system for multipurpose hemp[C]∥24th International European Biomass Conference on Setting the Course for a Biobased Economy. Florence: Amsterdam, 2016: 356-358.
20 Kaniewski R, Mankowski J, Rynduch W, et al. Modemized hemp mower[C]∥Natural Fiber Wokna Naturalne. Flax and Other Bast Plants Symposium, Poznon, Poland, 1997: 25-27.
21 Chen Y, Liu J, Gratton J L. Engineering perspectives of the hemp plant, harvesting and processing[J]. Journal of Industrial Hemp, 2004, 9(2): 23-39.
22 周杨. 工业大麻圆盘切割装置的设计与试验研究[D]. 北京: 中国农业科学院研究生院, 2017.
Zhou Yang. Design and expeirmental research of hemp disc cutter[D]. Beijing: Graduate School, Chinese Academy of Agricultural Sciences, 2017.
23 王法昌, 周学建, 师清翔, 等. 新型玉米收获机横向输送装置的参数研究[J]. 农机化研究, 2010, 32(5): 152-155.
Wang Fa-chang, Zhou Xue-jian, Shi Qing-xiang, et al. Parameters study on transverse transport of new corn combine[J]. Journal of Agricultural Mechanization Research, 2010, 32(5): 152-155.
24 张宗玲, 韩增德, 李树君, 等. 玉米穗茎兼收收割台切割夹持输送装置仿真与试验[J]. 农业机械学报, 2016, 47(): 215-221.
Zhang Zong-ling, Han Zeng-de, Li Shu-jun, et al. Simulation and test on straw cutting and clamping device of corn combine harvester for stalk and ears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Sup.1): 215-221.
25 徐向宏, 何明珠. 试验设计与Design-Expert SPSS应用[M]. 北京: 科学出版社责任有限公司, 2016.
26 王利民, 肖志刚, 刘宇欣, 等. 响应面法优化板栗基营养米挤压加工参数[J]. 吉林大学学报: 工学版, 2013, 43(2): 550-556.
Wang Li-min, Xiao Zhi-gang, Liu Yu-xin, et al. Optimization of extrusion process parameters of nutritious rice rich in chestnut by response surface method[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(2): 550-556.
27 王建楠, 刘敏基, 曹明珠, 等. 薏苡脱壳机关键部件作业参数优化与试验[J]. 农业工程学报, 2018, 34(13): 288-295.
Wang Jian-nan, Liu Min-ji, Cao Ming-zhu, et al. Working parameter optimization and experiment of key components of coix lacryma-jobi sheller[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 288-295.
28 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 739-748.
29 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.
30 杨德. 试验设计与分析[M]. 北京: 中国农业出版社, 2002.
[1] 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727.
[2] 马芳武,韩丽,吴量,李金杭,杨龙帆. 基于遗传与粒子群算法的隔振平台减振性能优化[J]. 吉林大学学报(工学版), 2020, 50(5): 1608-1616.
[3] 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757.
[4] 付君,张屹晨,程超,陈志,唐心龙,任露泉. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
[5] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[6] 薛钊,付君,陈志,王锋德,韩少平,任露泉. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报(工学版), 2020, 50(2): 739-748.
[7] 程超,付君,郝付平,陈志,周德义,任露泉. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报(工学版), 2020, 50(1): 351-360.
[8] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[9] 蔡中义,孟凡响,陈庆敏,赵轩. 复杂钩舌锻件近净成形的预锻形状优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 84-90.
[10] 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1969-1976.
[11] 程超,付君,唐心龙,陈志,任露泉. 振动形式对水稻脱出物界面粘附规律的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1228-1235.
[12] 王家序,蒋倩倩,李俊阳,韩彦峰,张雷,唐挺. 双圆弧谐波传动柔轮齿形参数多目标优化设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1194-1202.
[13] 李欣,王丹,陈军绪,孙延朋,谷诤巍,徐虹. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报(工学版), 2019, 49(4): 1258-1265.
[14] 夏利红, 邓兆祥. 电子机械制动执行器的整体最优匹配设计[J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[15] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!