吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 285-296.doi: 10.13229/j.cnki.jdxbgxb20210570

• 农业工程·仿生工程 • 上一篇    

交替换岗式大豆小区育种排种器优化设计与试验

顿国强1(),刘文辉1,毛宁1,吴星澎1,纪文义2,马洪岩3   

  1. 1.东北林业大学 机电工程学院,哈尔滨 150040
    2.东北农业大学 工程学院,哈尔滨 150030
    3.黑龙江睿龙创新科技有限责任公司,哈尔滨 150050
  • 收稿日期:2021-06-23 出版日期:2023-01-01 发布日期:2023-07-23
  • 作者简介:顿国强(1986-),男,讲师,博士.研究方向:农业及林业机械装备.E-mail:dunguoqiangpaper@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0201001);中央高校基本科研业务费专项项目(2572020BF03);东北林业大学横向课题开放项目(43221026)

Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding

Guo-qiang DUN1(),Wen-hui LIU1,Ning MAO1,Xing-peng WU1,Wen-yi JI2,Hong-yan MA3   

  1. 1.College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China
    2.College of Engineering,Northeast Agricultural University,Harbin 150030,China
    3.Heilongjiang Ruilong Innovation Technology Co. ,Ltd. ,Harbin 150050,China
  • Received:2021-06-23 Online:2023-01-01 Published:2023-07-23

摘要:

针对大豆小区育种清换种复杂的问题,设计了交替换岗大豆小区育种排种器。采用双排种盘交替作业完成清换种作业,采用离散元软件模拟了不同结构尺寸的排种器的投种、清种工作过程,以排种盘转速、下限角度、种箱宽度为试验因素,以单粒率、多粒率、空粒率为试验指标,采用3因素5水平二次回归正交旋转组合设计试验方法进行试验。试验结果表明:对单粒率,排种盘转速、下限角度、种箱宽度影响为极显著(P<0.01);对多粒率,排种盘转速、下限角度影响为极显著(P<0.01),种箱宽度为显著(P<0.05);对空粒率,排种盘转速、下限角度、种箱宽度影响为极显著(P<0.01)。当排种盘转速为45 r/min时,种箱宽度在9~15 mm,下限角度在92°~140°之间,可获得合格指数大于90%,重播指数小于5%,漏播指数小于5%。在最优组合参数下,制作排种器并进行田间试验,结果表明:仿真结果与理论结果基本吻合,该排种器清换种简洁高效,种子无残留,有效解决了清换种复杂的问题。

关键词: 农业机械化工程, 小区育种, 排种器, 清换种, 结构优化, 离散元

Abstract:

In view of the complex problem of clearing and changing seeds in soybean plot breeding, a seed metering device was designed for soybean plot breeding with alternate post changing, the seed feeding and clearing processes of seed metering devices with different structural sizes were simulated by discrete element software. The rotation speed of seed metering plate, the lower limit angle and the width of seed box were taken as experimental factors, and the single grain rate, multiple grain rate and empty grain rate were taken as experimental indexes, and the experiment was carried out by using the experimental method of 3-factor 5-level quadratic regression orthogonal rotation combination design. The results showed that: the effect on single seed rate, rotation speed of metering tray, lower limit angle and width of seed box was extremely significant (P<0.01);The effect on multiple seed rate, rotation speed of seed plate and lower limit angle was extremely significant (P<0.01), and the width of seed box was significant (P<0.05); The results showed that there were significant effects on empty particle rate, rotation speed of metering tray, lower limit angle and width of seed box (P<0.01). The width of seed box was 9~15 mm and the lower limit angle was 92°~140°, when the rotation speed of seed tray was 45 r/min. The qualified index is more than 90%, the replay index is less than 5%, and the miss index is less than 5%. The results show that the simulation results are basically consistent with the theoretical results. The seed cleaning and exchange of the metering device is simple and efficient, and there is no residual seeds, which effectively solves the complex problem of seed cleaning and exchange.

Key words: agricultural mechanization engineering, plot breeding, seed metering device, seed cleaning, structure optimization, discrete element method

中图分类号: 

  • S223.2

图1

排种器示意图"

图2

排种器工作阶段图"

图3

作业状态"

表1

大豆种子尺寸测量结果"

大豆品种指标长度L/mm宽度W/mm厚度T/mm均径d/mm密度ρ/(g·mm-3
合农60最大值8.597.376.947.631.22
最小值5.435.665.125.601.22
均值6.646.515.996.521.22
标准差0.4620.3600.3790.2780.03

图4

下限角度分析"

图5

刷籽轮示意图"

图6

排种盘结构示意图"

图7

充种的3种状态"

图8

状态a位置几何关系"

图9

种箱两种宽度示意图"

图10

EDEM仿真图"

表2

全局变量参数设置"

位置变量数值
大豆颗粒泊松比0.25
剪切模量/Pa1.04×106
密度/(kg·m-31230
塑料壁面泊松比0.30
剪切模量/Pa1.04×107
密度/(kg·m-31290
种刷泊松比0.40
剪切模量/Pa1.1×108
密度/(kg·m-31150
大豆?大豆恢复系数0.60
静摩擦因数0.45
滚动摩擦因数0.05
大豆?壁面恢复系数0.60
静摩擦因数0.40
滚动摩擦因数0.01
大豆?种刷恢复系数0.45
静摩擦因数0.50
滚动摩擦因数0.01

表3

试验因素水平表"

水平

排种盘转速ω

/(r·min-1

下限角度φ

/(°)

种箱宽度wz

/mm

1.68270.00150.0015.00
161.89135.8113.78
050.00115.0012.00
-138.1194.1910.22
-1.68230.0080.009.00

表4

试验结果"

序号因素水平试验结果
排种盘转速X1下限角度X2种箱宽度X3单粒率y1/%多粒率y2/%空粒率y3/%
1-1.000-1.000-1.00091.623.624.76
21.000-1.000-1.00086.343.2610.4
3-1.0001.000-1.00092.545.731.73
41.0001.000-1.00092.953.563.49
5-1.000-1.0001.00092.363.134.51
61.000-1.0001.00086.642.0411.32
7-1.0001.0001.00090.175.264.57
81.0001.0001.00088.793.088.13
9-1.6820.0000.00091.544.144.32
101.6820.0000.00086.423.5710.01
110.000-1.6820.00087.373.169.47
120.0001.6820.00090.336.862.81
130.0000.000-1.68294.563.042.4
140.0000.0001.68292.952.035.02
150.0000.0000.00094.793.231.98
160.0000.0000.00095.283.141.58
170.0000.0000.00094.163.222.62
180.0000.0000.00094.122.982.9
190.0000.0000.00094.963.621.42
200.0000.0000.00095.422.062.52
210.0000.0000.00094.172.813.02
220.0000.0000.00095.263.281.46
230.0000.0000.00095.122.961.92

表5

方差分析"

评价 指标来源平方和自由度均方FP
单粒率模型209.36923.36114.84<0.0001
X131.02131.02153.11<0.0001
X211.38111.3856.19<0.0001
X34.9214.9224.290.0003
X1X212.58112.5862.08<0.0001
X1X30.6210.623.070.1034
X2X37.1617.1635.36<0.0001
X1268.74168.74339.37<0.0001
X2271.81171.81354.53<0.0001
X322.4412.4412.040.0041
残差2.63130.20
失拟项0.4150.0820.30.9023
纯误差2.2280.28
总变异212.0022
多粒率模型25.0392.7811.36<0.0001
X13.3413.3413.660.0027
X210.20110.2041.66<0.0001
X31.3911.395.680.0331
X1X21.0511.054.290.0587
X1X30.06810.0680.280.6059
X2X30.07210.0720.290.5963
X121.0911.094.460.0546
X227.1417.1429.18<0.0001
X320.6610.662.710.1234
残差3.18130.24
失拟项1.6950.341.810.2180
纯误差1.5080.19
总变异28.2222
空粒率模型213.48923.7263.88<0.0001
X154.73154.73147.4<0.0001
X243.13143.13116.17<0.0001
X311.54111.5431.09<0.0001
X1X26.3516.3517.110.0012
X1X31.1011.102.970.1085
X2X35.8015.8015.610.0017
X1252.50152.50141.41<0.0001
X2233.66133.6690.65<0.0001
X325.6515.6515.210.0018
残差4.83130.37
失拟项1.7350.350.900.5261
纯误差3.0980.39
总变异218.3022

图11

排种盘转速与下限角度对单粒率响应曲面"

图12

种箱宽度与下限角度对单粒率的响应曲面"

图13

种箱宽度与下限角度对多粒率的响应曲面"

图14

排种盘转速与下限角度对多粒率的响应曲面"

图15

排种盘转速与下限角度对空粒率响应曲面"

图16

种箱宽度与下限角度对空粒率的响应曲面"

图17

参数优化分析"

图18

田间试验"

表6

台架试验结果"

试验次数合格指数ys/%重播指数yd/%漏播指数ym/%

残留种子

m4/个

平均值94.512.602.890
194.212.962.830
294.063.232.710
394.572.063.370
495.212.142.650
1 倪坤晓, 何安华. 中国粮食供需形势分析[J]. 世界农业, 2021(2): 10-18.
Ni Kun-xiao, He An-hua. Analysis on the situation of grain supply and demand in China[J]. World Agriculture, 2021(2): 10-18.
2 袁承程, 张定祥, 刘黎明, 等. 近10年中国耕地变化的区域特征及演变态势[J]. 农业工程学报, 2021, 37(1): 267-278.
Yuan Cheng-cheng, Zhang Ding-xiang, Liu Li-ming, et al. Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009-2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 267-278.
3 刘曙光, 尚书旗, 杨然兵, 等. 小区播种机的发展分析[J]. 农机化研究, 2011, 33(3): 237-241.
Liu Shu-guang, Shang Shu-qi, Yang Ran-bing, et al. Development analysis of community planter [J]. Journal of Agricultural Mechanization Research, 2011, 33(3): 237-241.
4 连政国, 王建刚, 杨兆慧, 等. 小区育种机械化在中国的发展[J]. 农业工程学报, 2012, 28(10): 140-144.
Lian Zheng-guo, Wang Jian-gang, Yang Zhao-hui, et al. Development of plot-sowing mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 140-144.
5 尚书旗,杨然兵,殷元元,等. 国际田间试验机械的发展现状及展望[J]. 农业工程学报, 2010, 26(): 5-8.
Shang Shu-qi, Yang Ran-bing, Yin Yuan-yuan, et al. Current situation and development trend of mechanization of field experiments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(Sup.1): 5-8.
6 杨薇, 李建东, 方宪法, 等. 玉米育种播种机械化国内外现状及发展趋势[J]. 农业工程, 2018, 8(6): 9-15.
Yang Wei, Li Jian-dong, Fang Xian-fa, et al. Domestic and foreign current situation and development trend of seeding mechanization in maize breeding[J]. Agricultural Engineering, 2018, 8(6): 9-15.
7 Lian Zheng-guo, Wang Jian-gang, Yang Zhao-hui, et al. Development of plot-sowing mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(Sup.2): 140-145.
8 周家鹏, 王延耀. 小区播种机净种系统的研究[J]. 农机化研究, 2016, 38(10): 109-113.
Zhou Jia-peng, Wang Yan-yao. Plot seeder seed-clearing system research[J]. Journal of Agricultural Mechanization Research, 2016, 38(10): 109-113.
9 姜峰. 机动式大豆育种精密播种机的研究[D]. 哈尔滨:东北农业大学工程学院, 2012.
Jiang Feng. Study on motorized precision planter for soybean breeding [J]. Harbin:College of Engineering,Northeast Agricultural University, 2012.
10 谷金龙, 陈海涛, 顿国强. 2BXJ-4(A)型大豆小区育种精 量播种机的设计与试验研究[J]. 大豆科学, 2014, 33(5): 742-747.
Gu Jin-long, Chen Hai-tao, Guo-qiang Dun. Design and experimental study on 2BXJ-4(A) precision seeder for soybean breeding in plot[J]. Soybean science, 2014, 33(5): 742-747.
11 黄珊珊, 陈海涛, 王业成. 插装式大豆小区播种机排种系统预充种清种机构的设计[J]. 大豆科学, 2017, 36(4): 626-631.
Huang Shan-shan, Chen Hai-tao, Wang Ye-cheng, et al. Design of pre filling and cleaning mechanism for seed metering system of plug in soybean plot planter [J]. Soybean Science, 2017, 36 (4): 626-631.
12 陈海涛, 王洪飞, 王业成. 三叶式自动清换种大豆育种气吸排种器设计与试验[J]. 农业机械学报, 2020, 51(12): 75-85.
Chen Hai-tao, Wang Hong-fei, Wang Ye-cheng, et al. Design and experiment of three-leaf type air-suction seed meter with automatic clear and replace seeds features for soybean plot test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 75-85.
13 孙殿君, 蒋洪蔚, 胡国华. 大豆垄上三行“大垄密”栽培技术[J]. 大豆科技, 2014, 22(1): 20-24.
Sun Dian-jun, Jiang Hong-wei, Hu Guo-hua. Cultivation technique of "wide ridge dense planting"in soybean[J]. Soybean Science and Technology, 2014, 22(1): 20-24.
14 蔡婧驰,张涛,邓宝英,等.自走式小区精量播种机在小麦育种中的使用总结[J]. 农业与技术, 2019, 39(1): 80-83.
Cai Jing-chi, Zhang Tao, Deng Bao-ying, et al. Application summary of self-propelled plot precision planter in wheat breeding[J]. Agriculture and Technology, 2019, 39(1): 80-83.
15 张波屏. 播种机械设计原理[M]. 北京:机械工业出版社, 1982: 283-291.
16 Ess D R, Hawkins S E, Young J C, et al. Evaluation of the performance of a belt metering system for soybeans planted with a grain drill[J]. Applied Engineering in Agriculture, 2005, 21(6): 965-969.
17 杨薇, 方宪法, 李建东, 等. 种腔自净型气吸式玉米小区精量排种器设计与试验[J]. 农业机械学报, 2019, 50(6): 64-73.
Yang Wei, Fang Xian-fa, Li Jian-dong, et al. Design and experiment of air-suction precision seed meter with self-clearing seed chamber for corn plot test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(6):64-73.
18 Xu Tian-yue, Yu Jian-qun, Yu Ya-jun, et al. A modelling and verification approach for soybean seed particles using the discrete element method[J]. Advanced Powder Technology, 2018, 29: 3274-3290.
19 Cay Anil, Kocabiyik Habib, May Sahin. Development of an electro-mechanic control system for seed-metering unit of single seed corn planters part II: field performance[J]. Computers and Electronics in Agriculture, 2018 (145):11⁃17.
20 施伟, 李哲, 姚应方, 等. 基于EDEM的内充式花生排种器排种性能仿真研究[J]. 农机化研究, 2021, 43(5): 183-189.
Shi Wei, Li Zhe, Yao Ying-fang, et al. Simulation study on seeding performance of inner-filling peanut seed-metering device based on EDEM[J]. Journal of Agricultural Mechanization Research, 2021, 43(5): 183-189.
21 徐浩, 陶栋材, 陶韵晖, 等. 基于EDEM的水稻槽轮排种器排种仿真与试验研究[J]. 中国农业科技导报, 2018, 20(3): 64-70.
Xu Hao, Tao Dong-cai, Tao Yun-hui, et al. Simulation and experimental research on rice seed metering device based on EDEM[J]. Journal of Agricultural Science and Technology, 2018, 20(3): 64-70.
22 顿国强, 于春玲, 杨永振, 等. 大豆育种排种盘型孔参数仿真优化与试验[J]. 农业工程学报, 2019, 35(19): 62-73.
Guo-qiang Dun, Yu Chun-ling, Yang Yong-zhen, et al. Parameter simulation optimization and experiment of seed plate type hole for soybean breeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 62-73.
23 许健, 蔡宗寿, 甘义权, 等. 基于EDEM的倾斜圆盘勺式大豆排种器清种过程优化研究[J]. 东北农业大学学报, 2018, 49(10): 79-88.
Xu Jian, Cai Zong-shou, Gan Yi-quan, et al. Optimization study on seed clearing process for declined disc-scooptype soybean seed metering device based on EDEM[J]. Journal of Northeast Agricultural University, 2018, 49(10): 79-88.
24 王琛, 刘扬, 段俊兆, 等. 育种试验小区播种机排种器性能及应用分析[J]. 农业机械, 2012(28): 124-126.
Wang Chen, Liu Yang, Duan Jun-zhao. Performance and application analysis of seed metering device of planter in breeding experimental plot[J]. Agricultural Machinery, 2012(28): 124-126.
25 陆伟安, 黄世明, 冯天玉, 等. 型孔式排种器的设计与试验[J]. 湖北农业科学,2020, 59(16): 149-152.
Lu Wei-an, Huang Shi-ming, Feng Tian-yu, et al. Design and test of hole-type seed meter[J]. Hubei Agricultural Sciences, 2020, 59(16): 149-152.
26 Yazgi Arzu, Degirmencioglu Adnan. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate[J]. Measurement,2014,56:128⁃135.
27 史嵩, 张东兴, 杨丽, 等.基于EDEM软件的气压组合孔式排种器充种性能模拟与验证[J]. 农业工程学报, 2015, 31(3): 62-69.
Shi Song, Zhang Dong-xing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3):62-69.
28 潘丽军. 试验设计与数据处理[M]. 南京:东南大学出版社, 2008.
29 徐中儒. 回归分析与试验设计[M]. 北京:中国农业出版社, 1998.
30 任露泉. 试验优化设计与分析[M]. 2版. 北京:高等教育出版社, 2003.
31 .中耕作物精密播种机产品质量分等 [S].
32 . 单粒(精密)播种机试验方法 [S].
[1] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[2] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[3] 彭勇,章秀芳,郭泽宇,陆学元,李彦伟. 离散元法分析集料接触特性对沥青混合料剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 178-187.
[4] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[5] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[6] 高文英,林静,李宝筏,王伟,谷士艳. 秸秆深埋还田机振动特性分析与结构优化[J]. 吉林大学学报(工学版), 2022, 52(4): 970-980.
[7] 王同建,杨书伟,谭晓丹,陈晋市,刘同文,职振领. 基于DEM⁃MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报(工学版), 2022, 52(4): 811-818.
[8] 耿端阳,孙延成,牟孝栋,张国栋,姜慧新,朱俊科. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 693-702.
[9] 刘佳杰,马兰,向伟,颜波,文庆华,吕江南. 4QM-4.0型麻类青饲料联合收获机研制[J]. 吉林大学学报(工学版), 2022, 52(12): 3039-3048.
[10] 曾百功,黎奎良,叶进,任丽丽,Rashidov Jaloliddin,张明. 工厂化上海青流水线收割装置的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2756-2764.
[11] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[12] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
[13] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[14] 梁荣庆,钟波,蒙贺伟,孙志民,坎杂. 4QJ⁃3型青贮燕麦捡拾割台的研制[J]. 吉林大学学报(工学版), 2021, 51(5): 1887-1896.
[15] 袁佳诚,王昌,何坤,万星宇,廖庆喜. 油菜联合收获机筛下物组分质量比对清选性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1897-1907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!