吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2254-2262.doi: 10.13229/j.cnki.jdxbgxb.20211110

• 车辆工程·机械工程 • 上一篇    

基于惯性基准多传感器耦合的路面谱测量方法

陈辉1(),邵亚军2   

  1. 1.兰州交通大学 铁道技术学院,兰州 730070
    2.兰州资源环境职业技术大学 机电工程学院,兰州 730021
  • 收稿日期:2021-10-26 出版日期:2023-08-01 发布日期:2023-08-21
  • 作者简介:陈辉(1983-),男,讲师,博士.研究方向:非线性振动与控制,现场总线远程智能控制与通信技术,车辆系统动力学.E-mail:chenhui@lzjtu.edu.cn
  • 基金资助:
    甘肃省重点研发计划项目(18YF1GA063)

Measurement method of pavement surface spectrum with multi⁃sensor coupling based on inertial benchmark

Hui CHEN1(),Ya-jun SHAO2   

  1. 1.School of Railway Technical,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.School of Mechanical & Electronical Engineering,Lanzhou Resources & Environment Voc-Tech University,Lanzhou 730021,China
  • Received:2021-10-26 Online:2023-08-01 Published:2023-08-21

摘要:

基于惯性坐标基准,结合多传感器耦合的路面谱测量方法,将测量系统平台搭载在移动设备(如车辆)上获取道路谱。采用车辆行驶过程中道路谱测量系统获取到的来自车辆瞬时加速度、俯仰角、实时位移与地理信息等数据来计算被测路面不平度;路面不平度以外激励方式引起车辆俯仰与侧倾运动,致使道路参数采集产生误差与错误。本文基于惯性坐标基准,采用多传感器与执行器耦合方法,利用PID控制算法,结合陀螺仪、加速度传感器、角度传感器数据对步进电机进行闭环控制,实时修正测量系统平台因车辆俯仰、侧倾和垂向运动对激光位移传感器姿态的影响,获取准确的道路谱数据。由测量平台获取的不同类型道路位移功率谱密度图像可知,本文方法具有一定的正确性与优越性。

关键词: 车辆工程, 惯性坐标基准, 激光位移传感器, 路面不平度, 路面谱(PSD)

Abstract:

Pavement spectrum measurement method based on the inertial coordinate datum and multi-sensor coupling system, the measuring system platform is installed on the vehicle to obtain the pavement spectrum. The pavement roughness is calculated by using the instantaneous acceleration, pitch angle, real-time displacement, and geographic information which obtained by the measurement platform during vehicle driving. Pavement roughness will stimulate the vehicle motion of pitch and roll, which brings errors to the collection of pavement parameters. Based on inertial coordinate datum, multi-sensor and actuator coupling method is adopted in this paper. Based on the PID control algorithm, to implement closed-loop control for the stepper motor combined with gyroscope, acceleration sensor and angle sensor data, the influence of vehicle pitch, roll and vertical motion on the attitude of laser displacement sensor are corrected in real time to achieve accurate measurement of pavement spectrum. It can be clearly seen from the power spectral density images of different types of pavement displacement obtained by the measuring platform, that the proposed method in this paper is correct and superior.

Key words: vehicle engineering, inertial coordinate benchmark, laser displacement sensor, pavement roughness, pavement surface spectrum (PSD)

中图分类号: 

  • U412.21

图1

直梁基准路面谱测量原理1-调节支座;2-刚性直梁;3-采集轮;4-位移记录仪;5-被测路面;6-基杆"

图2

改进的直梁基准路面谱采集仪结构"

图3

传感器驱动电机和直梁驱动电机"

图4

超声波测速模块与测速界面"

图5

路面不平度3维轮廓"

图6

路面不平度轮廓"

图7

采用直梁基准仪采集的路面不平度曲线及功率谱密度"

图8

惯性坐标基准路面不平度测量原理"

图9

旋转车辆运动示意图"

图10

测量平台侧倾运动与测量误差"

图11

惯性基准路面谱测量方法结构"

图12

传感器角度定义"

图13

传感器和步进电机在车辆上安装结构"

图14

基于惯性基准路面谱测量系统原理"

图15

基于惯性基准道路谱采集控制系统软件界面"

图16

控制系统软件运行记录"

图17

凹凸路面不平度"

图18

带有坡度路面不平度及功率谱密度"

1 马建, 赵祥模, 贺拴海. 路面检测技术综述[J]. 交通运输工程学报, 2017, 17(5): 121-137.
Ma Jian, Zhao Xiang-mo, He Shuan-hai. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5) :121-137.
2 张宝振, 王汉平, 张哲, 等. 二维路面不平度的分形构造方法[J]. 兵工学报, 2020, 41(12): 2389-2396.
Zhang Bao-zhen, Han-ping Whang, Zhang Zhe, et al. Fractal construction method of 2D road roughness[J]. Acta Armamentarii,2020, 41(12):2389-2396.
3 段虎明, 石峰, 谢飞,等. 道路谱测量检测技术研究综述[J]. 电子测量与仪器学报, 2010, 24(1): 72-79.
Duan Hu-ming, Shi Feng, Xie Fei, et al. Summary of research on road spectrum measurement[J]. Journal of Electronic Measurement and Instrument, 2010, 24(1): 72-79.
4 Jiang M, Gielen G, Deng B, et al. A fast learning algorithm for time-delay neural networks[J]. Information Sciences, 2002, 148(1-4): 27-39.
5 Kim J, Lee H D. Development of new automated crack measurement algorithm to analyze laser images of pavement surface[C]∥Transportation Research Board Meeting, Washington,USA, 2009: 093672.
6 Broberg P. Surface crack detection in welds using thermography[J]. Ndt & E International, 2013, 57: 69-73.
7 Wang K, Engineering K, Arkansas U O, et al. Elements of automated survey of pavements and a 3D methodology[J]. Journal of Modern Transportation, 2011, 19: 51-57.
8 Mohan A, Poobal S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, 57(2): 787-798.
9 Wang K, Gong W. Real-time automated survey system of pavement cracking in parallel environment[J]. Journal of Infrastructure Systems, 2005, 11(3): 154-164.
10 Huang Y X. Automatic inspection of pavement cracking distress [J]. Journal of Electronic Imaging, 2006, 15(1): 013017.
11 李杰, 郭文翠, 赵旗, 等. 基于车辆响应的路面不平度识别方法[J]. 吉林大学学报: 工学版, 2019, 49(6): 1810-1817.
Li Jie, Guo Wen-cui, Zhao Qi,et al. Road roughness identification based on vehicle responses[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(6) :1810-1817.
12 牛治慧, 苏建, 张益瑞, 等. 基于转向架试验台的轨道不平顺模拟试验[J]. 吉林大学学报: 工学版, 2017, 47(2): 400-407.
Niu Zhi-hui, Su Jian, Zhang Yi-rui, et al. Track irregularity simulation based on bogie test rig[J]. Journal of Jilin University (Engineering and Technology Edition),2017,47(2):400-407.
13 Chen H, Jin W Y. Dynamic response of a semiactive suspension system with hysteretic nonlinear energy sink based on random excitation by means of computer simulation[J]. Complexity, 2020(2): 3181423.
14 段虎明, 石锋, 谢飞, 等. 道路谱测量系统的误差与精度分析[J]. 汽车工程, 2010, 32(9): 783-788.
Duan Hu-ming, Shi Feng, Xie Fei, et al. Error and accuracy analysis on road spectra measurement system[J]. Automotive Engineering, 2010, 32(9): 783-788.
15 王建锋, 李平, 韩毅. 基于多传感器综合的路面不平度测量[J]. 武汉大学学报: 工学版, 2012, 45(3): 361-365.
Wang Jian-feng, Li Ping, Han Yi. Road roughness measurement based on multi-sensor data comprehension[J]. Engineering Journal of Wuhan University, 2012, 45(3): 361-365.
16 Liu X D, Wang H X, Shan Y C, et al. Construction of road roughness in left and right wheel paths based on PSD and coherence function[J]. Mechanical Systems and Signal Processing, 2015, 60/61: 668-677.
17 赵济海. 路面不平度的测量分析与应用[M]. 北京: 北京理工大学出版社, 2000.
18 刘玉梅, 庄娇娇, 曹晓宁. 基于小波理论的双六自由度试验台轨道不平顺模拟[J]. 吉林大学学报: 工学版, 2019, 49(1): 30-38.
Liu Yu-mei, Zhuang Jiao-jiao, Cao Xiao-ning. Track irregularity simulation of dual 6-DOF test-bed based on wavelet theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 30-38.
19 过学迅, 徐占, 李孟良, 等. 路面不平度测量技术研究综述[J]. 中外公路, 2009, 39(5): 47-51.
Guo Xue-xun, Xu Zhan, Li Meng-liang, et al. Review on measurement technology of pavement roughness[J]. Journal of China & Foreign Highway, 2009, 39(5): 47-51.
20 机械振动道路路面谱测量数据报告: [S].
[1] 张树培,夏明悦,张玮,陈钊,陈义祥. 考虑非线性刚度的间隙球铰碰撞动力学建模与仿真[J]. 吉林大学学报(工学版), 2023, 53(8): 2227-2235.
[2] 刘平义,李晓婷,高偌霖,李海涛,魏文军,王亚. 车辆侧倾驱动机构设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2185-2192.
[3] 黄学劲,钟锦星,路京雨,赵霁,肖伟,袁新枚. 基于用户画像的电动汽车充电负荷预测方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2193-2200.
[4] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[5] 陈鑫,张冠宸,赵康明,王佳宁,杨立飞,司徒德蓉. 搭接焊缝对铝合金焊接结构轻量化设计的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1282-1288.
[6] 张勇,毛凤朝,刘水长,王青妤,潘神功,曾广胜. 基于Laplacian算法的汽车外流场畸变网格优化[J]. 吉林大学学报(工学版), 2023, 53(5): 1289-1296.
[7] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[8] 陈磊,王杨,董志圣,宋亚奇. 一种基于转向意图的车辆敏捷性控制策略[J]. 吉林大学学报(工学版), 2023, 53(5): 1257-1263.
[9] 尹燕莉,黄学江,潘小亮,王利团,詹森,张鑫新. 基于PID与Q⁃Learning的混合动力汽车队列分层控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1481-1489.
[10] 于贵申,陈鑫,武子涛,陈轶雄,张冠宸. AA6061⁃T6铝薄板无针搅拌摩擦点焊接头结构及性能分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1338-1344.
[11] 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480.
[12] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[13] 赵睿,李云,胡宏宇,高镇海. 基于V2I通信的交叉口车辆碰撞预警方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1019-1029.
[14] 陈小波,陈玲. 定位噪声统计特性未知的变分贝叶斯协同目标跟踪[J]. 吉林大学学报(工学版), 2023, 53(4): 1030-1039.
[15] 田彦涛,季言实,唱寰,谢波. 深度强化学习智能驾驶汽车增广决策模型[J]. 吉林大学学报(工学版), 2023, 53(3): 682-692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!