吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2581-2590.doi: 10.13229/j.cnki.jdxbgxb.20211227
Zhi ZHENG1,2(),Pei YUAN1,Xuan-hui JIN3,Si-si WEI1,Bo GENG1()
摘要:
针对既有防护结构不能实现多目标船型柔性防护的问题,提出了一种可防护中小型船舶的柔性护舷,该护舷可与既有防护结构搭配使用。对3种不同护舷开展了准静态压缩试验,确定了最优构造形式,通过足尺冲击试验和数值模拟对最优构造护舷的防护性能进行分析。结果表明:压缩试验下,不同试件的破坏模式相近,均出现外面板剪断,基体开裂,剪断处纤维断裂;压缩结束各试件回弹率高达85%以上;添加耗能芯材的试件3是最优构造形式。落锤冲击试验下,撞击力折减率达到97%,撞后护舷变形完全恢复,护舷以弹性耗能的方式耗散能量;驳船撞击下,护舷吸收了63%的碰撞能量,且能大幅减轻船舶损伤,此时护舷主要以耗能芯材的压溃吸收碰撞能量。
中图分类号:
1 | Larsen O D.Ship Collision with Bridges: The Interaction Between Vessel Traffic and Bridge Structures[M]. Switzerland: International Association for Bridge and Structural Engineering, 1993. |
2 | .公路桥梁抗撞设计规范 [S]. |
3 | 王君杰,耿波. 桥梁船撞概率风险评估与措施[M].中国: 人民交通出版社,2010. |
4 | 张锡祥, 王智祥, 巫祖烈, 等. 一种新型FRP桥墩防撞浮箱结构[J].重庆交通大学学报: 自然科学版, 2011, 30(3): 388-393, 510. |
Zhang Xi-xiang, Wang Zhi-xiang, Wu Zu-lie,et al. A late model FRP floating pontoon protection structue for bridge piers in the ship collison[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(3): 388-393, 510. | |
5 | Fang Hai, Mao Yi-feng, Liu Wei-qing, et al. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision[J]. Composite Structures, 2016(158): 187-198. |
6 | 方海, 王健, 祝露, 等. 武汉鹦鹉洲长江大桥中塔墩防船撞装置研究[J]. 桥梁建设, 2020, 50(1): 20-25. |
Fang Hai, Wang Jian, Zhu Lu,et al.Study of collision protection devices for central pylon pier of Yingwuzhou Changjiang river bridge in Wuhan[J]. Bridge Construction, 2020, 50(1): 20-25. | |
7 | Wang Li-li, Yang Li-ming, Huang De-jin, et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision[J]. International Journal of Impact Engineering, 2008, 35(8): 895-904. |
8 | Wang J J, Song Y C, Wang W,et al. Evaluation of flexible floating anti-collision device subjected to ship impact using finite-element method[J]. Ocean Engineering, 2019, 178: 321-330. |
9 | Fan Wei, Guo Wei, Sun Yang, et al. Experimental and nu-merical investigations of a novel steel-UHPFRC composite fender for bridge protection in vessel collisions[J]. Ocean Engineering, 2018, 165: 1-21. |
10 | 周凌宇,濮星旭, 卫军. 装配式UHPC防船撞耗能装置的性能[J]. 中南大学学报: 自然科学版, 2019, 50(4): 923-930. |
Zhou Ling-yu, Pu Xing-xu, Wei Jun. Precast UHPC protection system for bridge pier against ship collision[J]. Journal of Central South University(Science and Technology), 2019, 50(4): 923-930. | |
11 | 李华永, 周凌宇, 王强, 等. 新型装配式钢-UHPC防船撞装置关键参数及其性能研究[J].中南大学学报:自然科学版, 2021, 52(2): 519-528. |
Li Hua-yong, Zhou Ling-yu, Wang Qiang, et al. Research on key parameters and performance of new fabricatedsteel-UHPC anti-ship collision device[J].Journal of CentralSouth University(Science and Technology),2021, 52(2): 519-528. | |
12 | LSTC. Keyword User's Manual[M]. California: Livermore Software Technology Corporation, 2006. |
13 | 郑植, 耿波, 袁佩, 等. 桥墩复合材料防船撞装置新型连 接试验研究[J]. 重庆交通大学学报:自然科学版,2021, 40(5): 66-73. |
Zheng Zhi, Geng Bo, Yuan Pei, et al. Experimental study on a new connection of composite materials anti-collisiondevice for piers[J]. Journa of Chongqing Jiaotong University (Natural Science), 2021, 40(5): 66-73. | |
14 | Fan W, Yuan W C.Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil-structure interaction[J]. Ocean Engineering, 2014, 91(15): 11-27. |
15 | Liu B, Fan W, Guo W,et al. Experimental investigate on and improved FE modeling of axially-loaded circular RC columns under lateral impact loading[J]. Engineering Structures, 2017, 152(1): 619-642. |
16 | Xie R, Fan W, Liu B,et al.Dynamic behavior and vulnerability analysis of bridge columns with different cross-sectional shapes under rockfall impacts[J]. Structures,2020, 26:471-486. |
17 | Zhu L, Liu W, Fang H, et al. Design and simulate on of innovative foam-filled lattice composite bumper system for bridge protection in ship collisions[J]. Composites Part B: Engineering, 2019, 157: 24-35. |
18 | Wang J J, Song Y C, Wang W,et al.Evaluation of composite crashworthy device for pier protection against barge impact[J]. Ocean Engineering,2018, 169: 144-158. |
[1] | 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518. |
[2] | 李建华,王泽鼎. 考虑路径耗时的城市汽车分布式充电桩选点规划[J]. 吉林大学学报(工学版), 2023, 53(8): 2298-2303. |
[3] | 车佳玲,王俊,刘海峰,张居平. 沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J]. 吉林大学学报(工学版), 2023, 53(8): 2277-2286. |
[4] | 李洪涛,王琳虹,李俊达. 公路交叉口照明和限速对视觉搜索能力的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2287-2297. |
[5] | 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015. |
[6] | 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950. |
[7] | 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969. |
[8] | 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028. |
[9] | 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718. |
[10] | 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685. |
[11] | 薛志佳,王召阳,张久鹏,晏长根,许子凯,张英立,黄晓明,马涛. 泥石流作用下道路结构韧性分析及提升[J]. 吉林大学学报(工学版), 2023, 53(6): 1773-1781. |
[12] | 刘振亮,赵存宝,吴云鹏,马迷娜,马龙双. 数据驱动的公路桥梁网络全寿命抗震韧性评估[J]. 吉林大学学报(工学版), 2023, 53(6): 1695-1701. |
[13] | 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417. |
[14] | 贾洪飞,徐英俊,杨丽丽,王楠. 商品车多式联运联盟成员选择及利益分配[J]. 吉林大学学报(工学版), 2023, 53(4): 1060-1069. |
[15] | 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972. |
|