吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2591-2600.doi: 10.13229/j.cnki.jdxbgxb.20220044
霍光1(),林大为1,刘元宁2,3(),朱晓冬2,3,袁梦2,盖迪4
Guang HUO1(),Da-wei LIN1,Yuan-ning LIU2,3(),Xiao-dong ZHU2,3,Meng YUAN2,Di GAI4
摘要:
针对基于深度学习的虹膜分割模型存在参数量大、计算量大、占用空间大的问题,提出了一种轻量级的虹膜分割模型。首先,将Linknet中特征提取网络替换为改进的轻量级网络MobileNetv3。这种设计在保持准确性的同时显著地提高了模型效率。其次,为了减少虹膜特征信息丢失,设计了一个多尺度特征提取模块。再次,引入了通道注意力机制,抑制无关噪声,加大虹膜区域的权重。最后,在3个虹膜数据库上将本文模型与其他虹膜分割模型进行比较,结果表明,本文模型在虹膜分割准确率和效率之间取得了更好的平衡。
中图分类号:
1 | Arsalan M, Naqvi R A, Kim D S, et al. IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors[J]. Sensors, 2018, 18(5): No.1501. |
2 | Huo Guang, Lin Da-wei, Yuan Meng, et al. Heterogeneous iris segmentation method based on modified U-Net[J]. Journal of Electronic Imaging, 2021, 30(6): No.063015. |
3 | Umer S, Dhara B C. A fast iris localization using inversion transform and restricted circular hough transform[C]∥Proceedings of the 2015 8th International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6. |
4 | Bendale A, Nigam A, Prakash S, et al. Iris segmentation using improved hough transform[C]∥Proceedings of the 8th International Conference on Intelligent Computing, Huangshan, China, 2012: 408-415. |
5 | Roy D A, Soni U S. IRIS segmentation using Daughman's method[C]∥Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 2016: 2668-2676. |
6 | 周锐烨, 沈文忠. PI-Unet: 异质虹膜精确分割神经网络模型的研究[J]. 计算机工程与应用, 2021, 57(15): 223-229. |
Zhou Rui-ye, Shen Wen-zhong. PI-Unet: research on precise iris segmentation neural network model for heterogeneous iris[J]. Computer Engineering and Applications, 2021, 57(15): 223-229. | |
7 | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
8 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241. |
9 | Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]∥Proceedings of the 2017 IEEE Visual Communications and Image Processing, Petersburg, USA, 2017: 1-4 |
10 | Chen Ying, Wang Wen-yuan, Zeng Zhuang, et al. An adaptive CNNs technology for robust iris segmentation[J]. IEEE Access, 2019, 7: 64517-64532. |
11 | Wang Cai-yong, Wang Yun-long, Xu Bo-qiang, et al. A lightweight multi-label segmentation network for mobile iris biometrics[C]∥Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1006-1010. |
12 | Zhong Z L, Lin Z, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13062-13071. |
13 | Biometrics ideal test. CASIA.v4 Database[DB/OL]. [2022-01-06]. |
14 | Kumar A, Passi A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026. |
15 | Proena H, Filipe S, Santos R, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535. |
16 | Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]∥Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565-571. |
17 | Rathgeb C. Iris Biometrics from Segmentation to Template Security[M]. Iris Biometrics: From Segmentation to Template Security, 2012. |
18 | Wild P, Hofbauer H, Ferryman J, et al. Segmentation-level fusion for iris recognition[C]∥Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 2015: 1-6. |
19 | Uhl A, Wild P. Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation[C]∥Proceedings of the 2012 5th IAPR International Conference on Biometrics, New Delhi, India, 2012: 283-290. |
20 | A biometric reference system for iris, ersion osiris V 4.1[EB/OL]. [2022-01-06]. |
21 | Uhl A, Wild P. Multi-stage visible wavelength and near infrared iris segmentation framework[C]∥Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 2012: 1-10. |
22 | Ahmad S, Fuller B. Unconstrained iris segmentation using convolutional neural networks[C]∥Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2018: 450-466. |
23 | Alonsofern J O. Iris boundaries segmentation using the generalized structure tensor—a study on the effects of image degradation[C]∥Proceedings of the 2012 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, USA, 2012: 426-431. |
24 | Ehsaneddin J, Andreas U. Iris segmentation using fully convolutional encoder-decoder Networks[C]∥Proceedings of the Computer Vision and Pattern Recognition, New York, USA, 2017: 133-155. |
25 | 尤轩昂, 赵鹏, 慕晓冬, 等. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法[J]. 激光与光电子学进展,2022, 59(4): 109-120 |
You Xuan-ang, Zhao Peng, Mu Xiao-dong, et al. Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 109-120. | |
26 | Lozej J, Meden B, Struc V, et al. End-to-end iris segmentation using U-Net[C]∥Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence,San Carlos, Costa Rica, 2018: 1-6. |
27 | Zhang Wei, Lu Xiao-qi, Gu Yu, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089. |
28 | Wang Qi, Meng Xiang-yue, Sun Ting, et al. A light iris segmentation network[J]. The Visual Computer, 2021, 38: 2591-2601. |
29 | He Kai-ming, Zhang Xiang-yu, Ren Shao-qiang, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
[1] | 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. |
[2] | 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619. |
[3] | 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648. |
[4] | 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379. |
[5] | 郭晓新,李佳慧,张宝亮. 基于高分辨率网络的视杯和视盘的联合分割[J]. 吉林大学学报(工学版), 2023, 53(8): 2350-2357. |
[6] | 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429. |
[7] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[8] | 耿庆田,刘植,李清亮,于繁华,李晓宁. 基于一种深度学习模型的土壤湿度预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2430-2436. |
[9] | 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108. |
[10] | 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015. |
[11] | 唐菲菲,周海莲,唐天俊,朱洪洲,温永. 融合动静态变量的滑坡多步位移预测方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1833-1841. |
[12] | 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457. |
[13] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[14] | 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304. |
[15] | 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480. |
|