吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 180-187.doi: 10.13229/j.cnki.jdxbgxb.20220232

• 交通运输工程·土木工程 • 上一篇    

相变沥青混凝土复合结构降温效果试验分析

陈俊1(),孙振浩1,赵成1,吴欣怡2,王俊鹏1   

  1. 1.河海大学 土木与交通学院,南京 210098
    2.东南大学 能源与环境学院,南京 211189
  • 收稿日期:2022-03-09 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:陈俊(1981-),男,教授,博士.研究方向:道路新材料.E-mail:chen_jun2728@163.com
  • 基金资助:
    国家自然科学基金项目(52178421);江苏省自然科学基金项目(BK20191300);长沙理工大学公路养护技术国家工程实验室开放基金项目(kfj180107);中央高校基本科研业务费专项资金项目(B210202036)

Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete

Jun CHEN1(),Zhen-hao SUN1,Cheng ZHAO1,Xin-yi WU2,Jun-peng WANG1   

  1. 1.College of Civil and Transportation Engineering,Hohai University,Nanjing 210098,China
    2.School of Energy and Environment,Southeast University,Nanjing 211189,China
  • Received:2022-03-09 Online:2024-01-30 Published:2024-03-28

摘要:

为了研究多层相变沥青混凝土复合结构的降温效果,采用差示扫描量热法测试了5组不同分子量聚乙二醇(PEG)的相变温度,结合太阳辐射下沥青路面温度场模拟结果,拟定并制备了含PEG的7组相变沥青混凝土三层复合结构,采用自行制作的热辐射及测温装置,测试了热辐射9 h内相变沥青混凝土复合结构内部温度,分析了PEG使用层位、层间组合方式、分子量对复合结构储热降温的影响。结果表明,PEG分子量从1000增大到6000时,相变起始温度从25.1 ℃增高到54.4 ℃;相变材料掺入路面结构单层后,主要对掺入层及其以下层位具有降温效果;从性价比角度看,仅上层掺入PEG的方案优于上中两层、上中下三层使用PEG的方案;在相同掺量时,分子量高的PEG对路面结构的降温效果优于分子量低的。

关键词: 道路工程, 沥青混凝土, 相变, 复合结构, 降温, 聚乙二醇

Abstract:

To investigate the cooling effect of multi-layer phase change asphalt concrete structure, the phase transition temperatures of five groups of polyethylene glycol (PEG) with different molecular weights were measured by differential scanning calorimetry. Seven groups of three-layer composite asphalt concrete slabs containing PEG were prepared based on the simulation results of asphalt pavement temperature field under solar radiation. The internal temperature of these composite asphalt concrete slabs within 9 h of thermal radiation was measured using the self-developed thermal radiation and temperature measurement device. And the effects of PEG addition layer, combination of PEG addition layer and molecular weight on the heat storage and cooling of composite asphalt concrete slabs were analyzed. Results show that the starting temperature of phase transition increases from 25.1 ℃ to 54.4 ℃ with the molecular weight of PEG increasing from 1000 to 6000. The cooling effect is mainly reflected in the mixing layer and its lower layers when phase change material was added to the single layer of pavement structure. The scheme of adding PEG in the upper layer is better than that of using PEG in multiple layers from cost performance. The cooling effect of PEG with high molecular weight is better than that of PEG with low molecular weight at the same content.

Key words: road engineering, asphalt concrete, phase transition, composite structure, cooling effect, polyethylene glycol

中图分类号: 

  • U414

图1

不同分子量PEG的DSC和TG测试结果"

图2

PEG-6000/SiO2复合相变材料形态"

表1

SBS改性沥青技术性质"

针入度/mm软化点/℃5 ℃延度/cm60 ℃动力粘度/(Pa·s)
5889.234.337 683

表2

AC-13、AC-20及AC-25的矿料级配及沥青用量"

材料不同筛孔尺寸(mm)的通过率/%沥青 用量/%
31.526.5191613.29.54.752.361.180.60.30.150.075
AC-1310010010010093.780.755.439.922.517.912.28.97.05.1
AC-2010010093.887.672.863.144.228.319.715.411.88.06.34.7
AC-2510097.979.076.066.056.037.525.517.012.09.56.55.04.4

图3

模拟中的大气温度和太阳辐射强度"

表3

路面材料的热物性参数[20]"

材料厚度/cm密度/(kg·m-3比热容/[J·(kg·K)-1导热率/[W·(m·K)-1
AC-134250010701.30
AC-206245010601.25
AC-258240010501.20
水泥稳定碎石57255010001.10
砂石25250010001.10
土壤200260010600.95

图4

太阳辐射下路面温度场的模拟结果"

表4

8组沥青混合料复合结构"

层位8组复合结构内PEG的分子量
ABCDEFGH
AC-13 (4 cm)/6000//6000600060004000
AC-20 (6 cm)//2000/2000/20001500
AC-25 (8 cm)///1500/150015001000

图5

沥青混凝土三层复合结构的成型"

图6

热辐射相变混凝土上表面时的温度采集"

图7

照射过程中光辐射强度的分段设置"

图8

PEG掺入上层、中层、下层的降温效果"

图9

PEG掺入上层(B)、上中层(E)、上下层(F)及上中下层(G)的降温效果"

图10

不同分子量PEG掺入沥青层后的降温效果"

1 Badin G, Ahmad N, Ali H M. Experimental investigation into the thermal augmentation of pigmented asphalt[J]. Physica A: Statistical Mechanics and its Applications, 2019: No.123974.
2 Babagoli R, Ziaiari H. Evaluation of rutting performance of stone matrix asphalt mixtures containing warm mix additives[J]. Journal of Central South University, 2017, 24(2):360-373.
3 Kaphle R. Improving the thermal properties of asphalt concrete to reduce urban heat island effects[D]. San Antonio: The University of Texas,2018.
4 Sen S, Roesler J. Thermal and optical characterization of asphalt field cores for microscale urban heat island analysis[J]. Construction and Building Materials, 2019, 217(30):600-611.
5 Shi X, Rew Y, Ibers E, et al. Effects of thermally modified asphalt concrete on pavement temperature, International Journal of Pavement Engineering, 2019, 20(6): 669-681.
6 Hai V V, Park D W, Seo W J, et al. Evaluation of asphalt mixture modified with graphite and carbon fibers for winter adaptation: thermal conductivity improvement[J]. Journal of materials in civil engineering, 2017, 29(1):No.04016176.
7 Chen J, Zhou Z, Wu J, et al. Field and laboratory measurement of albedo and heat transfer for pavement materials[J]. Construction and Building Materials, 2019, 202:46-57.
8 姬彪.沥青路面热反射涂层的研究与发展[J].科技创新与应用,2017(16):229.
Ji Biao. Research and development of thermal reflective coating for asphalt pavement[J]. Technology Innovation and Application, 2017(16): 229.
9 孙斌祥,黄尹泰,沈航,等.沥青路面热反射涂层的降温性能研究综述[J].科学技术与工程,2021,21(9):3446-3456.
Sun Bin-xiang, Huang Yin-tai, Shen Hang, et al. Overview of studies on cooling performance of thermal reflection coating on asphalt pavement[J]. Science Technology and Engineering, 2021, 21(9): 3446-3456.
10 沙爱民,蒋玮.环保型多孔路面材料设计理念与架构[J].中国公路学报,2018,31(9):1-6.
Sha Ai-min, Jiang Wei. Design philosophy and architecture of eco-friendly porous pavement materials[J]. China Journal of Highway and Transport, 2018,31(9): 1-6.
11 张睿.保水路面蒸发降温模型与实验研究[D]. 北京:中国地质大学,2019.
Zhang Rui. Modeling and experimental studies on the evaporative cooling of water-retaining pavements[D]. Beijing: China University of Geosciences, 2019.
12 于华洋,马涛,王大为,等.中国路面工程学术研究综述·2020[J].中国公路学报,2020,33(10):1-66.
Yu Hua-yang, Ma Tao, Wang Da-wei, et al. Review on China’s pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020,33(10): 1-66.
13 刘涛,郭乃胜,谭忆秋,等. 路用相变材料研究现状和发展趋势[J].材料导报,2020,34(23):23179-23189.
Liu Tao, Guo Nai-sheng, Tan Yi-qiu, et al. Research and development trend of road usage phase change materials[J]. Materials Reports, 2020,34(23): 23179-23189.
14 李文虎,何丽红,朱洪洲,等.PEG/SiO2相变颗粒对沥青混合料储热及高温性能的影响[J]. 公路交通科技,2015,32(4):16-20.
Li Wen-hu, He Li-hong, Zhu Hong-zhou, et al. Effect of PEG/SiO2 phase change particles on heat storage and high temperature performance of asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015,32(4): 16-20.
15 雷宝财,范贤鹏,郑木莲. PEG/SiO2型控温相变沥青混合料的性能[J].筑路机械与施工机械化,2020,37():6-9.
Lei Bao-cai, Fan Xian-peng, Zheng Mu-lian. Performance of asphalt mixture with temperature-controlling phase change material of PEG/SiO2 [J]. Road Machinery and Construction Mechanization, 2020,37(Sup.1): 6-9.
16 Kuai C, Chen J, Shi X, et al. Regulating porous asphalt concrete temperature using PEG/SiO2 phase change composite: experiment and simulation[J]. Construction and Building Materials, 2020, 273(3):No.122043.
17 Chen J, Li J, Wang H, et al. Preparation and effectiveness of composite phase change material for performance improvement of open graded friction course[J]. Journal of Cleaner Production, 2019, 214: 259-269.
18 Chen J, Zhang W, Shi X, et al. Use of PEG/SiO2 phase change composite to control porous asphalt concrete temperature[J]. Construction and Building Materials, 2020, 245:No.111845.
19 李伊,刘黎萍,孙立军.全厚式沥青路面温度场预估模型[J].同济大学学报:自然科学版,2020,48(3):377-382.
Li Yi, Liu Li-ping, Sun Li-jun. Temperature field prediction model for thick asphalt layer[J]. Journal of Tongji University(Natural Science), 2020,48(3): 377-382.
20 张东.沥青路面控温用定形相变材料的制备与性能研究[D]. 武汉:武汉理工大学材料科学与工程学院,2019.
Zhang Dong. Research on preparation and performance of shape-formed phase change materials for asphalt pavement temperature-control[D]. Wuhan: School of Materials Science and Engineering,Wuhan University of Technology, 2019.
21 刘大龙,马岚,赵辉辉.城市复杂辐射场形成机理[J].太阳能学报,2021,42(10):458-463.
Liu Da-long, Ma Lan, Zhao Hui-hui. Formation mechanism of urban complex radiation field[J]. Acta Energiae Solaris Sinica, 2021,42(10): 458-463.
[1] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[2] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[3] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[4] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[5] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[6] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
[7] 姜屏,陈业文,陈先华,张伟清,李娜,王伟. 改性石灰土在干湿和冻融循环下的无侧限抗压性能[J]. 吉林大学学报(工学版), 2023, 53(6): 1809-1818.
[8] 司春棣,崔亚宁,许忠印,凡涛涛. 层间粘结失效后桥面沥青铺装层细观力学行为分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1719-1728.
[9] 李岩,张久鹏,陈子璇,黄果敬,王培. 基于PCA-PSO-SVM的沥青路面使用性能评价[J]. 吉林大学学报(工学版), 2023, 53(6): 1729-1735.
[10] 刘状壮,郑文清,郑健,李轶峥,季鹏宇,沙爱民. 基于网格化的路表温度感知技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1746-1755.
[11] 赵晓康,胡哲,张久鹏,裴建中,石宁. 基于光纤传感技术的路面结冰智能监测研究进展[J]. 吉林大学学报(工学版), 2023, 53(6): 1566-1579.
[12] 惠冰,杨心怡,张乐扬,李扬. 检测车轨迹偏移对沥青路面磨耗计算误差的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1756-1764.
[13] 李崛,张安顺,张军辉,钱俊峰. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1782-1789.
[14] 李博,李欣,芮红,梁媛. 基于变分模态分解和灰狼优化极限学习机的隧道口边坡位移预测[J]. 吉林大学学报(工学版), 2023, 53(6): 1853-1860.
[15] 王宁,马涛,陈丰,付永强. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1799-1808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!