吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 188-197.doi: 10.13229/j.cnki.jdxbgxb.20230135

• 交通运输工程·土木工程 • 上一篇    

融合机器视觉的桥梁动态称重方法

龙关旭1,2(),张修石3,辛公锋1,2,王涛3(),杨干3   

  1. 1.山东高速集团有限公司 创新研究院,济南 250101
    2.长安大学 公路学院,西安 710064
    3.山东省高速公路技术和安全评估重点实验室,济南 250101
  • 收稿日期:2023-02-16 出版日期:2024-01-30 发布日期:2024-03-28
  • 通讯作者: 王涛 E-mail:longgx5@163.com;wtbridge@chd.edu.cn
  • 作者简介:龙关旭(1990-),男,工程师,博士.研究方向:桥梁健康监测.E-mail:longgx5@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFB1600300);国家自然科学基金项目(518708058);山东省交通运输厅科技计划项目(2021B51);交通运输行业重点科技项目(2021-ZD1-011);山东省自然科学基金青年项目(ZR2020QE261)

Bridge weigh-in-motion combined with machine version

Guan-xu LONG1,2(),Xiu-shi ZHANG3,Gong-feng XIN1,2,Tao WANG3(),Gan YANG3   

  1. 1.Innovation Research Institute,Shandong Hi-Speed Group Co. ,Ltd. ,Jinan 250101,China
    2.School of Highway,Chang'an University Xi'an 710064,China
    3.Shandong Key Laboratory of Highway Technology and Safety Assessment,Jinan 250101,China
  • Received:2023-02-16 Online:2024-01-30 Published:2024-03-28
  • Contact: Tao WANG E-mail:longgx5@163.com;wtbridge@chd.edu.cn

摘要:

为了进一步提升现有的桥梁动态称重技术,提出了一种融合机器视觉的桥梁动态称重系统。首先,利用机器视觉算法对车辆进行识别和追踪;其次,对车辆作用下的桥梁响应监测信息进行处理;然后,利用虚拟简支梁理论对轴重、轴距进行识别;最后,通过模拟分析和室内试验的方式对本文方法的准确性进行检验。结果表明:本文方法在多种工况下,对车辆的轴重、轴距都具有较好的识别效果;轴重、轴距、总重识别平均相对误差分别为3.40%、4.31%和2.71%,并且具有一定的抗噪能力。

关键词: 桥梁工程, 桥梁动态称重, 机器视觉, 虚拟简支梁

Abstract:

To further improve the existing bridge weigh-in-motion technique, this paper proposes a bridge weigh-in-motion system integrated with machine vision. Firstly, the machine vision algorithm is used to identify and track the vehicle; then, the bridge response monitoring information under the action of the vehicle is processed; furthermore, the axle load and axle base are identified by using the virtual simply-supported beam theory; finally, the method is tested by simulation and test. The results show that the method proposed in this paper has a good identification effect on the axle weight and wheelbase of vehicles under various working conditions. The average relative errors of the identification of axle weight, wheelbase and total weight are 3.40%, 4.31% and 2.71% respectively. It has a certain anti-noise ability, which shows that the method has good robustness and applicability.

Key words: bridge engineering, bridge weigh-in-motion, machine vision, virtual simply-supported beam

中图分类号: 

  • U446.2

图1

新型桥梁动态称重系统框架"

图2

车辆识别效果"

图3

坐标系转换关系"

图4

虚拟简支梁法示意图"

图5

轴距识别示意图"

图6

典型横断面图(cm)"

图7

测点布置图"

图8

有限元模型图"

表1

车辆模型参数信息表"

参数两轴车三轴车
车辆总重G/t16.219.6
车体质量Mv /t12.415.7
车体点头惯性矩Jyv /(kg·m221 670172 000
车体侧翻惯性矩Jxv /(kg·m25 30061 500
第1轴轴重MA1/t6.25.5
第2轴轴重MA2/t1010
第3轴轴重MA3/t-4.1
第1轴到车体重心水平距离L1/m3.74.84
第2轴到车体重心水平距离L2/m2.31.51
第3轴到车体重心水平距离L3/m-2.81

图9

不同车速下识别误差统计"

图10

不同路面状况等级识别误差统计"

图11

不同噪声水平识别误差统计"

表2

多车荷载工况"

工况编号加载车辆 模型加载 车道加载速度/(m·s-1车头时 距/s
S111100.4
2210
S211100.8
2210
S311101.2
2210

表3

多车工况识别误差统计表"

工况识别参数二轴车三轴车
实际识别误差/%实际识别误差/%
S1AW1/t6.206.170.445.505.561.04
AW2/t10.009.851.5110.009.514.85
AW3/t---4.104.325.39
G/t16.2016.020.445.505.561.04
D1/m6.006.274.506.356.878.19
D2/m---1.301.0717.69
S2AW1/t6.206.271.085.505.293.77
AW2/t10.009.920.7810.0010.222.19
AW3/t---4.103.943.99
G/t16.2016.190.0719.619.450.77
D1/m6.006.183.006.356.685.20
S3D2/m---1.301.1513.04
AW1/t6.206.260.985.505.500.09
AW2/t10.009.980.1910.009.841.57
AW3/t---4.104.222.90
G/t16.2016.240.2619.6019.570.17
D1/m6.006.101.676.356.492.20
D2/m---1.301.254.00

图12

试验平台"

表4

车辆模型轴距及轴重参数表"

参数1号车辆 模型2号车辆 模型3号车辆 模型
轴距D/m0.410.7550.755
第1轴轴重AW1/kg1517.822
第2轴轴重AW2/kg1517.822
总重G/kg3035.644

图13

应变传感器布置图(cm)"

图14

应变传感器实测动力响应"

图15

试验车的检测效果图"

表5

单车试验工况表"

工况编号加载车辆模型加载车道加载速度/(m·s-1

S1

S2

1号车10.3
1号车10.5

S3

S4

1号车10.7
2号车10.3

S5

S6

2号车10.5
2号车10.7

图16

单车工况识别误差统计图"

表6

多车试验工况表"

工况编号加载车辆模型加载车道加载速度/(m·s-1车头时距/s
S7110.34
320.3
S8110.38
320.3
S9110.312
320.3

图17

多车工况识别误差统计图"

1 何维. 公路桥梁动态称重关键技术研究[D]. 长沙:湖南大学土木工程学院, 2019.
He Wei. Study of key technologies for highway bridge weigh-in-motion[D]. Changsha: College of Civil Engineering,Hunan University, 2019.
2 任伟新, 左小晗, 王宁波, 等. 非路面式桥梁动态称重研究综述[J]. 中国公路学报, 2014, 27(7): 45-53.
Ren Wei-xin, Zuo Xiao-han, Wang Ning-bo, et al. Review of non-pavement bridge weigh-in-motion[J]. China Journal of Highway and Transport, 2014, 27(7): 45-53.
3 Moses F. Weigh-in-motion system using instrumented bridges[J]. Journal of Transportation Engineering, 1979, 105(3): 233-249.
4 O'Brien E J, Quilligan M J, Karoumi R. Calculating an influence line from direct measurements[J]. Bridge Engineering, 2006, 159(1): 31-34.
5 邓露, 施海, 何维, 等. 基于虚拟简支梁法的桥梁动态称重研究[J]. 振动与冲击, 2018, 37(15): 209-215.
Deng Lu, Shi Hai, He Wei,et al. Vehicles' BWIM based on virtual simply-supported beam method[J]. Journal of Vibration and Shock,2018,37(15):209-215.
6 施海. 基于虚拟简支梁法的桥梁动态称重研究[D]. 长沙:湖南大学土木工程学院, 2017.
Shi Hai. Bridge weigh-in-motion based on the virtual simply-supported beam method[D]. Changsha: College of Civil Engineering,Hunan University, 2017.
7 Deng L, He W, Yu Y, et al. Equivalent shear force method for detecting the speed and axles of moving vehicles on bridges [J]. Journal of Bridge Engineering, 2018, 23(8): No.04018057.
8 He W, Deng L, Shi H, et al. Novel virtual simply supported beam method for detecting the speed and axles of moving vehicles on bridges[J]. Journal of Bridge Engineering, 2016, 22(4): No.04016141.
9 韩万水, 李彦伟, 乔磊, 等. 基于车-桥耦合振动理论的移动荷载识别[J]. 中国公路学报, 2013, 26(1): 74-86.
Han Wan-shui, Li Yan-wei, Qiao Lei, et al. Moving load identification based on vehicle bridge coupling vibration theory[J]. China Journal of Highway and Transport, 2013, 26(1): 74-86.
10 张青霞. 基于虚拟变形法的动态荷载与结构损伤识别方法研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2010.
Zhang Qing-xia. Dynamic load and structural damage identification using virtual distortion method[D]. Harbin: School of Civil Engineering,Harbin Institute of Technology,2010.
11 Yang G, Wang P, Han W S, et al. Automatic generation of fine-grained traffic load spectrum via fusion of weigh-in-motion and vehicle spatial-temporal information[J]. Computer-aided Civil and Infrastructure Engineering, 2022, 37(4):485-499.
12 夏烨, 简旭东, 邓露, 等. 交通视频辅助的桥梁动态称重方法研究[J]. 中国公路学报, 2021, 34(12): 104-114.
Xia Ye, Jian Xu-Dong, Deng Lu, et al. Research on traffic-video-aided bridge weigh-in-motion approach[J]. China Journal of Highway and Transport,2021, 34(12):104-114.
13 余婷. 基于影响线的桥梁快速安全评定方法研究[D]. 南京: 东南大学土木工程学院, 2019.
Yu Ting. Rapid assessment method of bridge safety condition based on influence line[D]. Nanjing: School of Civil Engineering,Southeast University, 2019.
14 Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11):2278-2324.
15 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]∥ International Conference on Neural Information Processing Systems, Lake Tahoe, USA,2012:1097-1105.
16 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv e-prints, 2014.
17 Girshick R B, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Columbus,USA, 2014: 580-587.
18 Girshick R. Fast RCNN[C]∥IEEE International Conference on Computer Vision, Cambridge, USA, 2015: 1440-1448.
19 Redmon J, Farhadi A.YOLOv3: An incremental improvement[J/OL].[2018-12-10]. .
20 杨干, 韩万水, 张书颖. 基于多源信息融合的交通荷载重构方法研究[C]∥世界交通运输大会论文集, 中国,武汉,2022: 421-426.
Yang Gan, Han Wan-shui, Zhang Shu-ying. Research on traffic load reconstruction method based on multi-source information fusion[C]∥Proceedings of 2022 World Transport Convention, Wuhan, China, 2022: 421-426.
21 韩万水, 陈艾荣. 随机车流下的风-汽车-桥梁系统空间耦合振动研究[J]. 土木工程学报, 2008(9):97-102.
Han Wan-shui, Chen Ai-rong. Three-dimensional coupling vibration of wind-vehicle-bridge systems under random traffic flow[J]. China Civil Engineering Journal,2008(9):97-102.
22 韩万水, 马麟, 汪炳, 等. 随机车流-桥梁系统耦合振动精细化分析与动态可视化[J]. 中国公路学报, 2013, 26(4):78-87.
Han Wan-shui, Ma Lin, Wang Bing, et al. Refinement analysis and dynamic visualization of traffic-bridge coupling vibration system[J]. China Journal of Highway and Transport,2013,26(4):78-87.
23 邓露, 何维, 俞扬, 等. 公路车-桥耦合振动的理论和应用研究进展[J]. 中国公路学报, 2018, 31(7):38-54.
Deng Lu, He Wei, Yu Yang, et al. Research progress in theory and applications of highway vehicle-bridge coupling vibration[J]. China Journal of Highway and Transport, 2018,31(7):38-54.
24 . Mechanical vibration-road surface profiles-reporting of measured data [S].
[1] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[2] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[3] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[4] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[5] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[6] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[7] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[8] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[9] 王俊,李加武,王峰,张久鹏,黄晓明. 简化U形峡谷风速分布及其对悬索桥抖振响应的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1658-1668.
[10] 王华,王龙林,张子墨,何昕. 基于裂缝宽度变化的连续刚构桥安全性预警技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1650-1657.
[11] 冯宇,郝键铭,王峰,张久鹏,黄晓明. 非平稳极端风作用下大跨桥梁瞬态风致效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1638-1649.
[12] 袁野. 温度和车辆作用下梁式桥梁结构固有频率分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1702-1710.
[13] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[14] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[15] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!