吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1407-1416.doi: 10.13229/j.cnki.jdxbgxb.20221367

• 计算机科学与技术 • 上一篇    

基于注意力机制改进的无锚框舰船检测模型

高云龙(),任明,吴川,高文   

  1. 中国科学院 长春光学精密机械与物理研究所,长春 130033
  • 收稿日期:2022-10-25 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:高云龙(1993-),男,助理研究员,博士. 研究方向:目标检测,深度学习. E-mail: gaoyl15@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61401425);吉林省科技发展计划重点研发项目(2022021146GX)

An improved anchor-free model based on attention mechanism for ship detection

Yun-long GAO(),Ming REN,Chuan WU,Wen GAO   

  1. Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • Received:2022-10-25 Online:2024-05-01 Published:2024-06-11

摘要:

为提升模型对合成孔径雷达(SAR)图像多尺度舰船目标的检测能力,保证检测网络的实时性,提出一个基于注意力机制改进的无锚框舰船检测模型。在YOLOX网络特征金字塔处嵌入空洞注意力模块,调节感受野与多尺度融合的关系,强化特征的表示能力。在检测头部设计中心性预测分支,对锚点的分类得分进行加权处理,调整模型的损失函数,优化检测结果。在数据集SSDD上进行的对比实验结果表明:本文提出的模型优于主流的深度网络检测模型,精度达到94.73%,且在检测精度和检测速度中取得最佳平衡。

关键词: 计算机视觉, 舰船目标检测, 空洞卷积, 注意力机制, 无锚框

Abstract:

In order to improve the detection capability of detectors for multiscale ships in SAR images and ensure the real-time performance of the detection networks, an improved anchor-free model based on attention mechanism for ship detection is proposed. On the basic framework of the off-the-shelf YOLOX, a lightweight dilated convolutional attention module (DCAM) is embedded in front of feature pyramid network (FPN) to adjust the relationship between receptive field and multiscale fusion, and strengthen the representation ability of features. The detection head is redesigned by introducing the center-ness prediction branch, which can weight the classification scores of the anchor points, in the meantime, the loss function of the proposed model is also revised to optimize the final detection performance. Through the comparative experiments on dataset SSDD, the proposed model in this paper is superior to the mainstream deep learning detection models, with an accuracy of 94.73%, and achieves the best trade-off between detection accuracy and detection speed.

Key words: computer vision, ship detection, dilated convolution, attention mechanism, anchor-free

中图分类号: 

  • TP391

图1

本文提出的检测网络结构图"

图2

空洞注意力模块结构图"

图3

子网络结构图"

图4

中心性预测"

表1

SSDD舰船目标分布统计"

类型Min(Pixel)

Max

(Pixel)

NumberPercentage/%
小型舰船4×632×3235 69559.96
中型舰船32×3296×9623 66039.74
大型舰船96×96207×1091800.30

表2

评价指标"

指标注释
AP50AP (IoU=0.5)
AP75AP (IoU=0.75)
APSAP (Small Ship)
APMAP (Medium Ship)
APLAP (Large Ship)

图5

空洞卷积块个数对检测性能的影响"

表3

空洞注意力模块对检测结果的影响"

模型IoU=0.5IoU=0.75
AP50/%Precision/%Recall/%F1AP75/%Precision/%Recall/%F1
不包含DCAM91.0692.1488.850.9057.5962.1860.230.61
包含DCAM94.7394.0290.280.9258.8564.0463.460.64

图6

特征可视化对比"

图7

空洞注意力模块有效性对比"

表4

特征金字塔对检测结果的影响"

模型IoU=0.5IoU=0.75FPS
AP50/%Precision/%Recall/%F1AP75/%Precision/%Recall/%F1
DCAM-YOLOX + FPN91.4891.2587.060.8955.3161.4159.370.6068
DCAM-YOLOX + PAN92.6992.0087.960.9056.7062.0261.630.6265
DCAM-YOLOX + 5-level BiFPN94.5793.9190.110.9258.2463.3663.090.6357
DCAM-YOLOX + 3-level BiFPN94.7394.0290.280.9258.8564.0463.460.6460

表5

中心性预测对检测结果的影响 (%)"

模型IoU=0.5IoU=0.75
AP50APLAPMAPSAP75APLAPMAPS
无中心性预测92.9182.3294.7290.8857.6040.0274.6348.65
与分类共享的中心性预测93.8983.0096.2691.3858.1542.7975.0449.56
与边界框回归共享的中心性预测94.7383.0796.7092.9658.8543.8175.2950.79

表6

各模型的检测结果"

模型IoU=0.5IoU=0.75FPS
AP50/%APL/%APM/%APS/%AP75/%APL/%APM/%APS/%
RetinaNet85.7081.2796.2085.5841.5239.5964.1840.2539
CenterNet84.1915.6889.4679.7432.914.2344.7726.1478
Faster-RCNN83.8063.5394.5769.2321.8340.0142.065.5916
YOLOv390.9861.7995.9690.7248.1521.1862.6539.2561
YOLOv493.6974.8096.4291.2850.4225.6464.6740.0050
YOLOX91.5663.9594.0388.7856.6938.3965.4948.7895
DCAM-YOLOX94.7383.07%96.7092.9658.8543.8175.2950.7960

图8

各模型检测结果对比"

1 Mao C, Huang L, Xiao Y, et al. Target recognition of SAR image based on CN-GAN and CNN in complex environment[J]. IEEE Access, 2021, 9: 39608-39617.
2 Wang C, Bi F, Zhang W, et al. An Intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 529-533.
3 Wang S, Wang M, Yang S, et al. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 351-362.
4 Leng X, Ji K, Xing X, et al. Area ratio invariant feature group for ship detection in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2376-2388.
5 Sun K, Liang Y, Ma X, et al. DSDet: a lightweight densely connected sparsely activated detector for ship target detection in high-resolution SAR images[J]. Remote Sensing, 2021, 13(14): No. 2743.
6 Yang R, Pan Z, Jia X, et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1938-1958.
7 Avi A, Roee D. CFAR detection algorithm for objects in sonar images[J]. IET Radar, Sonar Navigation, 2020, 14(11): 1757-1766.
8 Ren S, He K, Girshick R. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
9 Lin T, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision,Venice, Italy, 2017: 2999-3007.
10 Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2022-11-24]. .
11 Kang M, Leng X, Lin Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[J]. 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai,China, 2017: 1-4.
12 Yang X, Zhang X, Wang N, et al. A robust one-stage detector for multiscale ship detection with complex background in massive SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
13 Miao T, Zeng H, Yang W, et al. An improved lightweight retinanet for ship detection in SAR images[J]. Remote Sensing, 2022, 15: 4667-4679.
14 Sun Z, Dai M, Leng X, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. Remote Sensing, 2021, 14: 7799-7816.
15 Jiang Y, Li W, Liu L. R-CenterNet+: anchor-free detector for ship detection in SAR images[J]. Sensors, 2021, 21(17): No.5693.
16 Gao F, He Y, Wang J, et al. Anchor-free convolutional network with dense attention feature aggregation for ship detection in SAR images[J]. Remote Sensing, 2020, 12(16): No.2619.
17 Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL].[2022-11-24]. .
18 Tian Z, Shen C, Chen H, et al. FCOS: fully convolutional one-stage object detection[C]∥2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 9626-9635.
19 Lin T, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision,Venice, Italy, 2017: 2980-2988.
20 Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]∥Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 658-666.
21 Wang Y, Wang C, Zhang H. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): No.765.
22 Huang L, Liu B, Li B, et al. OpenSARShip: a dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195-208.
23 Everingham M, Zisserman A, Williams C, et al. The 2005 PASCAL visual object classes challenge [J]. MLCW, 2005:117-176.
24 Sutanto A, Kang D. A novel diminish smooth L1 loss model with generative adversarial network[C]∥12th International Conference of Intelligent Human Computer Interaction, Daegu, Korea, 2020: 361-368.
25 Bochkovskiy A, Wang C, Liao M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].[2022-11-24]. .
26 Tan M, Pang R, Le Q. EfficientDet: scalable and efficient object detection[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10778-10787.
27 Duan K, Bai S, Xie L, et al. CenterNet: keypoint triplets for object detection[C]∥2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 6568-6577.
[1] 王宇,赵凯. 基于亚像素定位的人体姿态热图后处理[J]. 吉林大学学报(工学版), 2024, 54(5): 1385-1392.
[2] 李晓旭,安文娟,武继杰,李真,张珂,马占宇. 通道注意力双线性度量网络[J]. 吉林大学学报(工学版), 2024, 54(2): 524-532.
[3] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[4] 郭晓新,李佳慧,张宝亮. 基于高分辨率网络的视杯和视盘的联合分割[J]. 吉林大学学报(工学版), 2023, 53(8): 2350-2357.
[5] 唐菲菲,周海莲,唐天俊,朱洪洲,温永. 融合动静态变量的滑坡多步位移预测方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1833-1841.
[6] 田彦涛,黄兴,卢辉遒,王凯歌,许富强. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480.
[7] 吕卫,韩镓泽,褚晶辉,井佩光. 基于多模态自注意力网络的视频记忆度预测[J]. 吉林大学学报(工学版), 2023, 53(4): 1211-1219.
[8] 田彦涛,许富强,王凯歌,郝子绪. 考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 674-681.
[9] 刘桂霞,田郁欣,王涛,马明睿. 基于双输入3D卷积神经网络的胰腺分割算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3565-3572.
[10] 刘晶红,邓安平,陈琪琪,彭佳琦,左羽佳. 基于多重注意力机制的无锚框目标跟踪算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3518-3528.
[11] 江晟,王鹏朗,邓志吉,别一鸣. 基于深度学习的交通事故救援图像融合算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3472-3480.
[12] 耿庆田,赵杨,李清亮,于繁华,李晓宁. 基于注意力机制的LSTM和ARIMA集成方法在土壤温度中应用[J]. 吉林大学学报(工学版), 2023, 53(10): 2973-2981.
[13] 欧阳继红,郭泽琪,刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656.
[14] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[15] 毛琳,任凤至,杨大伟,张汝波. 双向特征金字塔全景分割网络[J]. 吉林大学学报(工学版), 2022, 52(3): 657-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!