吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2723-2732.doi: 10.13229/j.cnki.jdxbgxb.20221431

• 农业工程·仿生工程 • 上一篇    

果园多风管喷雾机风送系统流场仿真和试验

杨欣(),刘玉肖,王阳,陈春皓,吕林硕   

  1. 河北农业大学 机电工程学院,河北 保定 071001
  • 收稿日期:2022-11-11 出版日期:2024-09-01 发布日期:2024-10-29
  • 作者简介:杨欣(1974-),男,教授,博士.研究方向:现代农业装备性能设计,地面机器系统人机安全. E-mail:yangxin@hebau.edu.cn
  • 基金资助:
    国家现代农业产业技术体系建设专项资金项目(CARS-27);河北省现代农业产业技术体系建设专项资金项目(HBCT2024150202)

Flow field simulation and test of air delivery system for orchard multiduct sprayer

Xin YANG(),Yu-xiao LIU,Yang WANG,Chun-hao CHEN,Lin-shuo LYU   

  1. College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding 071001,China
  • Received:2022-11-11 Online:2024-09-01 Published:2024-10-29

摘要:

针对传统环形风送喷雾机气流分布不均匀、雾滴穿透性差的问题,设计了果园多风管喷雾机风送系统。通过对风道、转换接口、柔性风管和出风口构成的内流场进行仿真确定了最优结构参数,通过外流场仿真确定了风机转速及出风口总高度最佳参数。根据仿真结果得到最优参数组合如下:风道宽度为170 mm、转换接口夹角为40°、柔性风管直径为123 mm、出风口宽度为52 mm、风机转速为2 160 r/min、出风口总高度为1.9 m,此参数下风送系统内外流场分布均匀,气流速度大小满足作业要求。按优化参数组建喷雾机风送系统并设计气流速度试验,结果表明:仿真值与试验值符合程度高,出风口左右两侧气流速度误差小于10%。通过田间试验得到雾滴穿透性良好,冠层之间雾滴沉积密度偏差小于12%,雾滴在冠层垂直方向上分布均匀。

关键词: 农业机械化工程, 果园喷雾机, 风送系统, 流场仿真, 气流速度

Abstract:

Design of orchard multi-duct sprayer air delivery system for the problems of uneven airflow distribution and poor droplet penetration of traditional ring-shaped air delivery sprayers. The optimal structural parameters were determined by simulation of the internal flow field consisting of the air duct, transition interface, flexible duct and air outlet, and the optimal parameters of the fan speed and total height of the air outlet were determined by external flow field simulation. According to the simulation results, the optimal combination of parameters was 170 mm duct width, 40° conversion interface angle, 123 mm flexible duct diameter, 52 mm outlet width, 2 160 r/min fan speed, and 1.9 m total height of the outlet. The air delivery system of the sprayer was set up according to the optimized parameters and designed for the airflow velocity test, and the results showed that the simulated values were in good agreement with the test values, and the error of airflow velocity on the left and right sides of the outlet was less than 10%. The droplet penetration was good, the deviation of droplet deposition density between canopies was less than 12%, and the droplets were evenly distributed in the vertical direction of the canopy.

Key words: agricultural mechanization engineering, orchard sprayer, air delivery system, flow field simulation, airflow velocity

中图分类号: 

  • S491

图1

风送系统结构图"

图2

风道CFD仿真结果"

表1

风道CFD仿真数据"

风道出口边长检测指标均值标准差
D1速度/(m·s-16.540.02
相对压力/Pa1067.341.97
D2速度/(m·s-16.670.03
相对压力/Pa324.123.73
D3速度/(m·s-17.090.89
相对压力/Pa702.969.72

图3

转换接口及出风口结构参数"

图4

不同结构参数对气流的影响"

表2

因素水平表"

水平试验因素
β/(°)Ф/mmL/mm
-13011040
04012050
15013060

表3

显著性及方差分析"

来源Y1Y2
FPFP
模型337.61<0.000 1224.660.000 2
A1 693.440.080 87.650.018 1
B913.28<0.000 1122.430.001 3
C211.630.000 41 342.380.001 2
AB12.020.004 750.490.368 6
AC5.97<0.000 1147.270.343 5
BC13.650.004 79.700.003 5
A230.62<0.000 186.28<0.000 1
B224.620.000 1236.130.005 1
C2134.510.156 429.760.000 7
失拟项1.910.073 62.230.133 7

图5

交互因素对响应值的影响"

图6

优化仿真结果"

表4

外流场仿真结果"

参数h/mv/(m·s-1
R1R2R3R1R2R3
H123 45.782 410.472 473.6512.6213.7615.14
H22 712.632 852.453 082.647.588.499.24
H33 246.783 314.623 368.515.236.477.31

图7

仿真结果对比图"

图8

不同高度下末速度箱型图"

图9

风速试验过程"

图10

气流速度对比图"

图11

田间试验过程"

图12

内膛雾滴沉积对比图"

1 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124.
Zheng Yong-jun, Chen Bing-tai, Lv Hao-tun, et al. Research progress of orchard plant protection mechanization technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 110-124.
2 Yue S, Heping Z, Hui L, et al. Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer[J]. Transactions of the ASABE, 2017, 60(6): 1827-1838.
3 王震涛, 牛浩, 唐玉荣, 等. 果园喷雾机械及技术的研究现状[J]. 塔里木大学学报, 2019, 31(3): 83-91.
Wang Zhen-tao, Niu Hao, Tang Yu-rong, et al. Research status of orchard spray machinery and technology [J]. Journal of Tarim University, 2019, 31(3): 83-91.
4 Kasner E J, Fenske R A, Hoheisel G A, et al. Spray drift from a conventional axial fan airblast sprayer in a modern orchard work environment[J]. Annals of Work Exposures and Health, 2018,62(9): 1134-1146.
5 王杰, 陶振洋, 茹煜, 等. 风机在农林植保机械中的应用研究现状及展望[J]. 中国农机化学报, 2016, 37(9): 67-74.
Wang Jie, Tao Zhen-yang, Ru Yu, et al. Research progress and outlook on application of fan in plant protection machinery of agriculture and forestry[J].Journal of Chinese Agricultural Mechanization, 2016, 37(9): 67-74.
6 Ade G, Molari G, Rondelli V. Recycling tunnel sprayer for poesticide dose adjustment to the crop environment[J]. Transactions of the ASABE, 2007, 50(2): 409-413.
7 Salcedo R, Ariane V, Granell R,et al. Eulerian-lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard[J]. Biosystems Engineering, 2017, 154: 76-91.
8 姜红花, 牛成强, 刘理民, 等. 果园多风管风送喷雾机风量调控系统设计与试验[J]. 农业机械学报, 2020, 51(): 298-307.
Jiang Hon-ghua, Niu Cheng-qiang, Liu Li-min, et al. Design and experiment of air volume control system of orchard multi-pipe air sprayer[J]. Journal of Luoyang Institute of Technology, 2020, 51(Sup.2): 298-307.
9 李建平, 边永亮, 霍鹏, 等.喷雾机风送式环形喷管喷雾装置设计与试验优化[J].农业机械学报, 2021, 52(9): 79-88.
Li Jian-ping, Bian Yong-liang, Huo Peng,et al. Design and experimental optimization of spray air supply annular nozzle spray device[J]. Journal of Agricultural Machinery, 2021,52 (9): 79-88.
10 Delele M A, De M A, Sonck B, et al.Modelling andvalidation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed[J]. Biosystems Engineering, 2005, 92(2): 165-174.
11 翟长远, 张燕妮, 窦汉杰, 等. 果园风送喷雾机出风口风场CFD建模与试验[J]. 智慧农业:中英文, 2021, 3(3): 70-81.
Zhai Chang-yuan, Zhang Yan-ni, Dou Han-jie, et al. CFD modeling and experiment of airflow at the air outlet of orchard air-assisted sprayer[J]. Smart Agriculture (English and Chinese), 2021, 3(3): 70-81.
12 Endalew A M, Debaerb C, Rutten N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying-Part I: model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(1): 128-136.
13 Duga A T, Delele M A, Rysen K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2016, 154: 62-75.
14 宋淑然, 夏侯炳, 卢玉华, 等. 风送式喷雾机导流器结构优化及试验研究[J]. 农业工程学报, 2012, 28(6): 7-12.
Song Shu-ran, Xia Hou-bing, Lu Yu-hua, et al. Structural optimization and experiment on fluid director of air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 7-12.
15 徐奕蒙. 基于CFD技术的喷雾机风场研究与风送喷雾机控制系统研制[D]. 杨凌: 西北农林科技大学水利与建筑工程学院, 2019.
Xu Yi-meng. Research on wind farm of sprayer based on CFD technology and control system of air sprayer[D]. Yangling:College of Water Resources and Building Engineering, Northwest Agriculture and Forestry University, 2019.
16 臧帅. 果园喷雾机风送喷雾系统设计仿真与试验研究[D]. 镇江: 江苏大学农业工程学院, 2020.
Zang Shuai. Design, simulation and experimental study of an air-assisted spraying system of orchard sprayer[D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2020.
17 向浩, 兰兴欣, 于磊. 基于Solidworks软件的风扇自然风模拟仿真分析的研究[J]. 中国机械, 2014(17): No.218.
Xiang Hao, Lan Xing-xin, Yu Lei. Research on simulation analysis of natural wind simulation of fan based on Solidworks software[J]. China Machinery, 2014(17): No.218.
18 王平. 基于Flow Simulation 的直埋供热管道热损失模拟分析[J]. 区域供热, 2021, 210(1): 29-33, 43.
Wang Ping. Simulation of heat loss in direct buried heating pipes based on Flow Simulation[J]. District Heating, 2021, 210(1): 29-33, 43.
19 张燕妮. 果园喷药空间风场及风树交互作用CFD建模研究[D]. 杨凌: 西北农林科技大学机械与电子工程学院, 2021.
Zhang Yan-ni. CFD modeling research on orchard spatial airflow field and interaction between airflow and tree for orchard spraying[D]. Yangling: College of Mechanical and Electronic Engineering,Northwest Agriculture and Forestry University, 2021.
20 Wang H Q, Zou Z Y, Chen S Q, et al. Numerical simulation investigation on pressure loss of diffusion tank of axial main fan[J]. Journal of Coal Science & Engineering, 2011, 17(4): 447-449.
21 李建平, 边永亮, 杨欣, 等. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报: 工学版, 2022, 52(10): 2474-2485.
Li Jian-ping, Bian Yong-liang, Yang Xin,et al. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2474-2485.
22 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008(6): 124-127.
Dai Fen-fen. Selection and calculation of the blowing rate of air-assisted sprayers [J]. Plant Protection, 2008(6): 124-127.
23 .风送式果园喷雾机作业质量 [S].
24 曹军琳, 祁力钧, 杨知伦, 等. 基于图像处理的雾滴沉积分布试验研究[J]. 中国农业大学学报, 2019, 24(1): 130-137.
Cao Jun-lin, Qi Li-jun, Yang Zhi-lun, et al. Experimental study of droplet distribution based on image processing[J]. Journal of China Agricultural University, 2019, 24(1): 130-137.
25 陈奕璇. 喷雾药液性质与农药沉积利用率关系研究[D]. 北京: 中国农业科学院植物保护研宄所, 2021.
Chen Yi-xuan. Study on the relationship between the properties of spray liquid and the utilization rate of pesticide[D]. Beijing: Institute of Plant Protection,Chinese Academy of Agricultural Sciences, 2021.
[1] 顿国强,吴星澎,纪欣鑫,张福利,纪文义,朱礼贵. 玉米条带摆管式撒肥装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2697-2707.
[2] 舒彩霞,杨佳,廖庆喜,万星宇,袁佳诚. 油菜联合收获导流式双筒旋风分离清选装置设计及试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1807-1820.
[3] 张国忠,丁凯权,李正博,陈龙,唐楠锐,刘婉茹,黄海东,周勇,王洪昌. 基于泥鳅体表的水稻直播机仿生滑板设计与试验[J]. 吉林大学学报(工学版), 2024, 54(5): 1482-1492.
[4] 张伏,娄立民,钱丹,王世强,冯春凌,赵一荣. 大方捆打捆机压缩机构优化设计及试验[J]. 吉林大学学报(工学版), 2024, 54(4): 1166-1174.
[5] 周鹏飞,陈学庚,蒙贺伟,梁荣庆,张炳成,坎杂. 滚筒式机收膜杂除土装置设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2718-2731.
[6] 刘伟健,罗锡文,曾山,文智强,曾力. 履带式再生稻收获机田间转弯机理和性能试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2695-2705.
[7] 张茂健,金敬福,陈奕颖,陈廷坤. 轮式拖拉机对称结构的振动特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2136-2142.
[8] 朱光强,李天宇,周福君,王文明. 鲜食玉米仿生摘穗装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1231-1244.
[9] 顿国强,刘文辉,毛宁,吴星澎,纪文义,马洪岩. 交替换岗式大豆小区育种排种器优化设计与试验[J]. 吉林大学学报(工学版), 2023, 53(1): 285-296.
[10] 曾山,黄登攀,杨文武,刘伟健,文智强,曾力. 三角履带式再生稻收割机底盘的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(8): 1943-1950.
[11] 魏国粱,张青松,王彪,何坤,廖庆喜. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718.
[12] 刘佳杰,马兰,向伟,颜波,文庆华,吕江南. 4QM-4.0型麻类青饲料联合收获机研制[J]. 吉林大学学报(工学版), 2022, 52(12): 3039-3048.
[13] 曾百功,黎奎良,叶进,任丽丽,Rashidov Jaloliddin,张明. 工厂化上海青流水线收割装置的设计与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2756-2764.
[14] 万星宇,廖庆喜,蒋亚军,单伊尹,周宇,廖宜涛. 饲用油菜机械化收获切碎过程离散元仿真与试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2735-2745.
[15] 朱光强,李天宇,周福君. 鲜食玉米仿生摘穗柔性夹持输送装置设计与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2486-2500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!